Thecrown ethers show good efficiency for lithium isotope separation due to their high affinity and size selectivity for lithium ions. A chitosan (CTS) graft 4'-formoxylbenzo-15-crown-5-ether (FB15C5) (CTS-
g
-FB15C5) film was synthesized from chitosan and FB15C5
via
Schiff reaction. The structure of CTS-
g
-FB15C5 film was analyzed through XPS analysis. The solid-liquid extraction was used to study the lithium ion adsorption kinetics
adsorption thermodynamics and lithium isotope separation effect of the CTS-
g
-FB15C5 films. Meanwhile
the effect of immobilization amount of crown ether on CTS and extraction temperature on single stage separation factor were also explored. The results showed that pseudo-second-order kinetic model and Langmuir isotherm model were more favorable to describe the process of lithium ions adsorption on CTS-
g
-FB15C5 film with the immobilization amount of crown ether of 2.98 mmol/g. It indicated that the Li
+
ions adsorption carried out with CTS-
g
-FB15C5 film exhibited the typical chemical adsorption and the monolayer adsorption. The thermodynamics parameters
such as Gibbs free energy (△
G
)
enthalpy change (△
H
) and entropy change (△
S
)
indicated that Li
+
ions adsorption on the film was spontaneous
exothermic and random. Furthermore
the single stage separation factor decreased from (1.053 ±0.002) to (1.012 ±0.001) with the increase of extraction temperature from 10℃ to 30℃ during the solid-liquid extraction for lithium isotopes separation using CTS-
g
-FB15C5 film. The single stage separation factor increased from (1.042 ±0.002) to (1.053 ±0.002) with the increasing immobilization amount of crown ether from 1.10 mmol/g to 2.98 mmol/g. The maximum value of single stage separation factor obtained from the extraction system of H
2
O-LiI/CTS-
g
-FB15C5 film at 10℃ was up to (1.053 ±0.002)
which was higher than an acceptable single stage separation factor of 1.03 in a large scale. In addition
it was found that light isotope (
6
Li) was concentrated in the film
whereas the heavy isotope
7
Li
was enriched in the solution. In sum
the produced CTS-
g
-FB15C5 films have a good potential prospect in lithium isotope adsorptive separation.
XL Sun , W Zhou , L Gu , D Qiu , DH Ren , Z G Gu , Z J Li . J Nucl Sci Technol , 2015 . 52 ( 3 ): 332 - 341 . DOI:10.1080/00223131.2014.946454http://doi.org/10.1080/00223131.2014.946454.
K Okuyama , I Okada , N Saito . J Inorg Nucl Chem , 1973 . 35 ( 8 ): 2883 - 2895 . DOI:10.1016/0022-1902(73)80520-2http://doi.org/10.1016/0022-1902(73)80520-2.
M Saleem , S Hussain , M Rafiq , M A Baig . J Appl Phys , 2006 . 100 ( 5 ): 053111(1-7) .
K Otake , T Suzuki , H J Kim , M Nomura , Y Fujii . J Nucl Sci Technol , 2006 . 43 ( 4 ): 419 - 422 . DOI:10.1080/18811248.2006.9711115http://doi.org/10.1080/18811248.2006.9711115.
T Sugiyama , K Sugiura , M Tanaka , E Youichi . Fusion Eng Des , 2012 . 87 ( 8 ): 1186 - 1189.
W Zhou , X L Sun , L Gu , F F Bao , X X Xu , C Y Pang , Z G Gu , Z J Li . J Radioanal Nucl Chem , 2014 . 300 ( 2 ): 843 - 852 . DOI:10.1007/s10967-014-3052-yhttp://doi.org/10.1007/s10967-014-3052-y.
K Nishizawa , S Ishion , H Watanabe . J Nucl Sci Technol , 1984 . 21 ( 9 ): 694 - 701 . DOI:10.1080/18811248.1984.9731102http://doi.org/10.1080/18811248.1984.9731102.
D W Kim , H J Kim , J S Jeon , K Y Chio , Y S Jeon . J Radioanal Nucl Chem , 2000 . 245 ( 3 ): 571 - 574 . DOI:10.1023/A:1006765412344http://doi.org/10.1023/A:1006765412344.
Tuanle Li , Hongchang Pei , Weijin Yuan , Feng Yan , Jianxin Li , Benqiao He , Dongfa Guo , Jianyong Cui . Acta Polymerica Sinica , 2015 . ( 7 ): 792 - 799 . http://www.gfzxb.org/CN/abstract/abstract14311.shtml.
Y C Chen , C Lu . J Ind Eng Chem , 2014 . 20 ( 4 ): 2521 - 2527 . DOI:10.1016/j.jiec.2013.10.035http://doi.org/10.1016/j.jiec.2013.10.035.
Z Lu , C Huangfu , Y Wang , H Ge , Y Yao , P Zou , G Wang , H He , H Rao . Mater Sci Eng C , 2015 . 52 ( 44 ): 251 - 258.
Z P Gao , Z F Yu , T L Yue , S Y Quek . J Food Eng , 2013 . 116 ( 9 ): 195 - 201.
M Iman , S Esmail , E Mohsen . J Saudi Chem Soc , 2014 . ( 18 ): 792 - 801.
Y J Tu , C F You , C K Chang . J Hazard Mater , 2012 . 235-236 ( 2 ): 116 - 122.
F Yan , H Liu , H C Pei , J X Li , Z Y Cui , B Q He . J Radioanal Nucl Chem , 2017 . 311 ( 3 ): 2061 - 2068 . DOI:10.1007/s10967-017-5181-6http://doi.org/10.1007/s10967-017-5181-6.
K Nishizawa , H Watanabe , S Ishion . J Nucl Sci Technol , 1984 . 21 ( 2 ): 133 - 138 . DOI:10.1080/18811248.1984.9731024http://doi.org/10.1080/18811248.1984.9731024.
F Yan , H C Pei , Y C Pei , T L Li , J X Li , B W He , Y Cheng , Z Y Cui , D F Guo , J Y Cui . Ind Eng Chem Res , 2015 . 54 ( 13 ): 3473 - 3479 . DOI:10.1021/acs.iecr.5b00314http://doi.org/10.1021/acs.iecr.5b00314.
Crosslinking Kinetics and Application of Chitosan-Genipin Nanogel
Construction of High Performance Chitosan Based Solid State Ion Thermoelectric Battery and Thermoelectric Performance
Polysaccharide Based Injectable Self-healing Hydrogels with Glucose Responsive Drug Release Behavior
Strong and Tough Chitosan Aerogels via Hofmeister Effect
Related Author
No data
Related Institution
College of Food Science and Technology, Nanjing Agricultural University
School of Applied Chemistry and Engineering, Univerdity of Science and Technology of China
State Kay Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Materials Science and Engineering, Northeast Forestry University
Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University