Yu-jie Yao, Qi Lu, Hong Gao, Xian-hong Wang, Fo-song Wang. Studies on the Influence of Pyrene on the Low Temperature Performance of Polyaniline Containing Lithium-sulfur Battery. [J]. Acta Polymerica Sinica (9):1517-1523(2017)
DOI:
Yu-jie Yao, Qi Lu, Hong Gao, Xian-hong Wang, Fo-song Wang. Studies on the Influence of Pyrene on the Low Temperature Performance of Polyaniline Containing Lithium-sulfur Battery. [J]. Acta Polymerica Sinica (9):1517-1523(2017) DOI: 10.11777/j.issn1000-3304.2017.17096.
Studies on the Influence of Pyrene on the Low Temperature Performance of Polyaniline Containing Lithium-sulfur Battery
Conductive polyaniline is an important material to improve the capacity and cycle stability of Lithium-sulfur battery
but lithium-sulfur cathode with conductive polyaniline still faces poor capacity retention and cycle stability at temperature below 0℃ due to slow equilibration of sulfur or polysulfides. A novel concept using redox mediator to accelerate electrochemical reaction at low temperature was proposed. By adding a redox mediator with its redox potential below S and between Li and S
the electrochemical reaction is accelerated and the low temperature performance of Li-S battery is therefore improved. More specifically
when pyrene is used as the redox mediar (RM)
it can be oxidized to RM
+
at the cathode surface by sulfur or polysulfides
then RM
+
attains electron from cell system regenerating RM. The mediator acts as an electron transfer agent permitting efficient reduction of sulfur or polysulfides. Pyrene is identified from cyclic voltammogram (CV) test as electrochemical active substance around the high-plateau in discharge process
which meets the requirement of redox mediator in Li-S battery at low temperature. When pyrene was dissolved in electrolyte
it may act as an effective electron transfer agent to increSase the electron transfer rate
permitting efficient reduction of sulfur to polysulfides Li
2
S
X
(4 ≤
X
≤ 8)
thereby accelerating the equilibration process
and finally enhanced the low temperature performance of Li-S battery. To analyze the influence of pyrene on the composition of reduction products of sulfur
ex situ
X-ray photoelectron spectroscopy (XPS) is used to test the cathode material after discharging to 2.2 V at the 10
th
cycle. XPS experiments confirm that the addition of pyrene may accelerate the polysulfides equilibration rate and prolong the first plateau. When ultrathin sulfur-wrapped PANI nanocomposite (S-PANI) is used as cathode material
taking the capacity of 25℃ as reference
the addition of 0.1 mol/L pyrene into electrolyte could raise the 50
th
capacity retention rate from 68.9% to 84.6% at 0℃
i.e
. by 22.8%. This capacity retention rate is increased by 25.2% from 56.0% to 70.1% at -15℃.
关键词
聚苯胺芘锂硫电池低温性能电荷转移中间体
Keywords
PolyanilinePyreneLithium-sulfur batteryLow temperature performanceRedox mediator
references
P G Bruce , S A Freunberger , L J Hardwick , J M Tarascon . . Nat Mater , 2012 . 11 19 - 29.
A Manthiram , Y Z Fu , Y S Su . . Acc Chem Res , 2013 . 46 1125 - 1134 . DOI:10.1021/ar300179vhttp://doi.org/10.1021/ar300179v.
A Manthiram , Y Z Fu , S H Chung , C X Zu , Y S Su . . Chem Rev , 2014 . 114 11751 - 11787 . DOI:10.1021/cr500062vhttp://doi.org/10.1021/cr500062v.
M Barghamadi , A S Best , A I Bhatt , A F Hollenkamp , M Musameh , R J Rees , T Rüther . . Energy Environ Sci , 2014 . 7 3902 - 3920 . DOI:10.1039/C4EE02192Dhttp://doi.org/10.1039/C4EE02192D.
J Q Huang , X F Liu , Q Zhang , C M Chen , M Q Zhao , S M Zhang , W Zhu , W Z Qian , F Wei . . Nano Energy , 2013 . 2 314 - 321 . DOI:10.1016/j.nanoen.2012.10.003http://doi.org/10.1016/j.nanoen.2012.10.003.
J K Wang , K Q Yue , X D Zhu , K L Wang , L F Duan . . Phys Chem Chem Phys , 2016 . 18 261 - 266 . DOI:10.1039/C5CP05447Hhttp://doi.org/10.1039/C5CP05447H.
Y V Mikhaylik , J R Akridge . . J Electrochem Soc , 2003 . 150 A306 - A311 . DOI:10.1149/1.1545452http://doi.org/10.1149/1.1545452.
J R Akridge , Y V Mikhaylik , N White . . Solid State Ion , 2004 . 175 243 - 245 . DOI:10.1016/j.ssi.2004.07.070http://doi.org/10.1016/j.ssi.2004.07.070.
Yang Sun , Hongming Zhang , Jinlong Lv , Xianhong Wang , Fosong Wang . . Acta Polymerica Sinica , 2016 . ( 1 ): 105 - 110 . DOI:10.11777/j.issn1000-3304.2016.15156http://doi.org/10.11777/j.issn1000-3304.2016.15156http://www.gfzxb.org/CN/abstract/abstract14434.shtml.
Y Z Luo , X H Wang , W Guo , M Rohwerder . . J Electrochem Soc , 2015 . 162 ( 6 ): 294 - 301 . DOI:10.1149/2.1101506jeshttp://doi.org/10.1149/2.1101506jes.
Y Z Luo , Y Sun , J L Lu , X H Wang , J Li , F S Wang . . Appl Surf Sci , 2015 . 328 247 - 254 . DOI:10.1016/j.apsusc.2014.11.177http://doi.org/10.1016/j.apsusc.2014.11.177.
Y Z Luo , A Vimalanandan , X H Wang , M Rohwerder . . Electrochim Acta , 2015 . 161 10 - 16 . DOI:10.1016/j.electacta.2015.02.082http://doi.org/10.1016/j.electacta.2015.02.082.
S P Zhou , H M Zhang , Q Zhao , X H Wang , J Li , F S Wang . . Carbon , 2013 . 52 440 - 450 . DOI:10.1016/j.carbon.2012.09.055http://doi.org/10.1016/j.carbon.2012.09.055.
S P Zhou , H M Zhang , X H Wang , J Li , F S Wang . . RSC Adv , 2013 . 3 ( 6 ): 1797 - 1807 . DOI:10.1039/C2RA22323Fhttp://doi.org/10.1039/C2RA22323F.
Q Lu , Q Zhao , H M Zhang , J Li , X H Wang , F S Wang . . ACS Macro Lett , 2013 . 2 ( 2 ): 92 - 95 . DOI:10.1021/mz3005605http://doi.org/10.1021/mz3005605.
H Gao , Q Lu , N J Liu , X H Wang , F S Wang . . J Mater Chem A , 2015 . 3 7215 - 7218 . DOI:10.1039/C5TA00379Bhttp://doi.org/10.1039/C5TA00379B.
Q Lu , H Gao , Y J Yao , N J Liu , X H Wang , F S Wang . . RSC Adv , 2015 . 5 92918 - 92922 . DOI:10.1039/C5RA21550Ahttp://doi.org/10.1039/C5RA21550A.
Y H Chen , S A Freunberger , Z Q Peng , O Fontaine , P G Bruce . . Nat Chem , 2013 . 5 489 - 494 . DOI:10.1038/nchem.1646http://doi.org/10.1038/nchem.1646.
S Meini , R Elazari , A Rosenman , A Garsuch , D Aurbach . . J Phys Chem Lett , 2014 . 5 915 - 918 . DOI:10.1021/jz500222fhttp://doi.org/10.1021/jz500222f.
L C H Gerber , P D Frischmann , F Y Fan , S E Doris , X H Qu , A M Scheuermann , K Persson , Y M Chiang , B A Heils . . Nano Lett , 2016 . 16 549 - 554 . DOI:10.1021/acs.nanolett.5b04189http://doi.org/10.1021/acs.nanolett.5b04189.
Y V Mikhaylik , R Akridge . . J Electrochem Soc , 2004 . 151 A1969 - A1976 . DOI:10.1149/1.1806394http://doi.org/10.1149/1.1806394.
K Kumaresan , Y Mikhaylik , R E White . . J Electrochem Soc , 2008 . 155 A576 - A582 . DOI:10.1149/1.2937304http://doi.org/10.1149/1.2937304.
C Barchasz , F Molton , C Duboc , J C Leprêtre , S Patoux , F Alloin . . Anal Chem , 2012 . 84 3973 - 3980 . DOI:10.1021/ac2032244http://doi.org/10.1021/ac2032244.
J Zhang , M Gu , H Chen , P Meduri , M H Engelhard , J G Zhang , J Liu , J Xiao . . J Mater Chem A , 2013 . 1 8464 - 8470 . DOI:10.1039/c3ta11553dhttp://doi.org/10.1039/c3ta11553d.