浏览全部资源
扫码关注微信
北京化工大学化工资源有效利用国家重点实验室 生物医用材料北京实验室 北京 100029
Published:20 April 2018,
Received:12 May 2017,
Revised:22 May 2017,
扫 描 看 全 文
Meng-juan Wei, Qi Zhang, Hang-tian Zhang, Yi-xian Wu.
Meng-juan Wei, Qi Zhang, Hang-tian Zhang, Yi-xian Wu.
采用烯丙基溴官能化聚异丁烯/高氯酸银体系引发四氢呋喃活性正离子聚合制备聚谷氨酸苄酯-
g
-(聚四氢呋喃-
b
-聚异丁烯)/银纳米复合材料(PBLG-
g
-(PTHF-
b
-PIB)/Ag).研究接枝密度对该纳米复合材料表面组成、形貌及自组装行为的影响,进一步探究纳米复合材料中银的含量、分布、晶型及存在形态,以布洛芬(IBU)作为模拟药物,研究接枝共聚物中接枝密度和平均支链长度对纳米复合材料载药释药行为的影响,通过抑菌圈法和MTT法研究纳米复合材料的抗菌性和细胞毒性.结果表明:通过烯丙基溴官能化聚异丁烯大分子引发四氢呋喃活性正离子开环聚合,可以原位制备不同接枝密度和不同平均支链长度的PBLG-
g
-(PTHF-
b
-PIB)/Ag纳米复合材料,其中银的质量含量在0.25%~3.9%之间,与其理论含量基本相吻合,银颗粒以聚集体形态存在,尺寸为5~10 nm,晶型为面心立方结构;该纳米复合材料在四氢呋喃/正己烷(4/1,
V
/
V
)混合介质中自组装形成胶束,胶束数目随接枝密度增加而减少,但尺寸增大;随接枝共聚物中接枝密度和纳米银含量增加,纳米复合材料的疏水性增加;随接枝共聚物中接枝密度增加,纳米复合材料表面形貌可由球形结构逐渐转化为双连续相结构;纳米复合材料的载药微球可以通过接枝共聚物中主链PBLG的空心螺旋结构、酰胺键及PTHF支链的醚键结构显示三重载药特性,载药量和累积释药量均随着接枝共聚物中接枝密度或PTHF链段长度增加而增加,且在37℃下的释药率是25℃下释药率的3倍左右.该纳米复合材料的抗菌性能随纳米银含量增加而增加,当纳米银含量为1.48%时,该纳米复合材料1周后细胞存活率为97.7%,即无细胞毒性.
The living cationic ring opening polymerization of tetrahydrofuran (THF) was carried out using polyisobulylene with functional terminal group (PIB-AllylBr) as a macroinitiator in the presence of AgClO
4
to synthesize PIB-
b
-PTHF living polymer chains. And then
the novel PBLG-
g
-(PTHF-
b
-PIB) block graft copolymer/silver (Ag) nanocomposites were
in situ
prepared
via
grafting the living polymer chains onto poly(
γ
-benzyl-L-glutamate) (PBLG) backbone. Several PBLG-g-(PTHF-
b
-PIB)/Ag nanocomposites with different grafting densities and average branch lengths have been achieved. The effect of grafting density on the surface morphology and self-assembly behavior of PBLG-
g
-(PTHF-
b
-PIB)/Ag nanocomposites was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The effects of grafting density and average branch length on the drug loading and release behavior were studied using ibuprofen (IBU) as a mimetic drug. The content
distribution
crystal form and morphology of nano-silver in nanocomposites were investigated by thermogravimetric analysis (TGA)
UV-Vis spectroscopy (XPS)
X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The content of nano-silver in the above nanocomposites was ranged from 0.25% to 3.9%
which coincided with the theoretical content of nano-silver. The crystal form of nano-silver was face-centered cubic structure as observed by XRD test. The size of the nano-silver particles was ranged from 5 nm to 10 nm
estimated by HRTEM
and the obvious diffraction fringes were observed. The water contact angle of the above nanocomposite films increased from 96° to 118° with an increase in grafting density from 15% to 45%
and with that in nano-silver content from 0.45% to 1.48%. PBLG-
g
-(PTHF-
b
-PIB)/Ag/IBU microspheres were found to be well drug-loaded with ibuprofen as mimetic drug
attributed to the
α
-helical secondary structure in PBLG backbone in the middle
the amide bond in PBLG backbone and the ether bond in PTHF segments. Both drug loading and cumulative release rate increased with increasing grafting density or length of PTHF segment. The release rate at 37℃ was around 3 times of that at 25℃ for the same copolymer. No cytotoxicity of the nanocomposite was found by MTT assay since the cell viability was 97.7% after one week with the content of nano-silver of 1.48%. Antimicrobial experiments were performed on PBLG-
g
-(PTHF-
b
-PIB)/Ag nanocomposites by antibacterial ring method and the results showed that these nanocomposites demonstrated excellent antibacterial activity.
正离子聚合聚谷氨酸苄酯-g-(聚四氢呋喃-b-聚异丁烯)嵌段接枝共聚物复合材料抗菌
Cationic polymerizationPBLG-g-(PTHF-b-PIB)Block graft copolymerCompositeAntibacterial
K Aoi , M Okada . Prog Polym Sci , 1996 . 21 151 - 208 . DOI:10.1016/0079-6700(95)00020-8http://doi.org/10.1016/0079-6700(95)00020-8.
S C Lee , Y Chang , J S Yoon , C Kim , I C Kwon , Y H Kim , S Y Jeong . Macromolecules , 1999 . 32 ( 6 ): 1847 - 1852 . DOI:10.1021/ma981664khttp://doi.org/10.1021/ma981664k.
R Weberskirch , R Hettich , O Nuyken , D Schmaljohann , B Voit . Macromol Chem Phys , 1999 . 200 ( 4 ): 863 - 873 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935.
R Langer . Acc Chem Res , 2000 . 33 ( 2 ): 94 - 101 . DOI:10.1021/ar9800993http://doi.org/10.1021/ar9800993.
W R Gombotz , D K Pettit . Bioconjugate Chem , 1995 . 6 ( 4 ): 332 - 351 . DOI:10.1021/bc00034a002http://doi.org/10.1021/bc00034a002.
T Thambi , V G Deepagan , K Y Chang . Polymer , 2011 . 52 ( 21 ): 4753 - 4759 . DOI:10.1016/j.polymer.2011.08.024http://doi.org/10.1016/j.polymer.2011.08.024.
Suning Zhang , Tao Chen , Jiaping Lin , Xiubin Dong , Shaoliang Lin . Acta Polymerica Sinica , 2005 . ( 6 ): 929 - 932 . http://www.gfzxb.org/article/id/8a9374da-b159-444f-9609-351604968d76.
章 苏宁 , 陈 涛 , 林 嘉平 , 董 秀斌 , 林 绍梁 . 高分子学报 , 2005 . ( 6 ): 929 - 932 . http://www.gfzxb.org/article/id/8a9374da-b159-444f-9609-351604968d76.
D M Tang , J P Lin , S L Lin , S N Zhang , T Chen , X H Tian . Macromol Rapid Commun , 2004 . 25 1241 - 1246 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
C G Mu , X D Fan , W Tian , Y Bai , Z Yang , W W Fan , H Chen . Polym Chem , 2012 . 3 3330 - 3339 . DOI:10.1039/c2py20586fhttp://doi.org/10.1039/c2py20586f.
Matyjaszewski K. New York: Marcel Dekker, 1996. 521-523
A R Guo , F Yang , R Yu , Y X Wu . Chinese J Polym Sci , 2015 . 33 ( 1 ): 23 - 35 . DOI:10.1007/s10118-015-1571-9http://doi.org/10.1007/s10118-015-1571-9.
H Cheradame , M Sassatelli , C Pomel , A Sanh , J Gau-Racine , L Bacri , L Auvray , P Guegan . Macromol Symp , 2008 . 261 167 - 181 . DOI:10.1002/(ISSN)1521-3900http://doi.org/10.1002/(ISSN)1521-3900.
L L Rueda , B F D'Arlas . Eur Polym J , 2009 . 45 ( 7 ): 2096 - 2109 . DOI:10.1016/j.eurpolymj.2009.03.013http://doi.org/10.1016/j.eurpolymj.2009.03.013.
E J Goethals , M F Dubreuil , L Tanghe . Macromol Symp , 2000 . 161 135 - 140 . DOI:10.1002/(ISSN)1521-3900http://doi.org/10.1002/(ISSN)1521-3900.
A R Guo , W X Yang , F Yang , R Yu , Y X Wu . Macromolecules , 2014 . 47 5450 - 5461 . DOI:10.1021/ma501060yhttp://doi.org/10.1021/ma501060y.
J P Kennedy . J Polym Sci, Part A:Polym Chem , 2005 . 43 ( 14 ): 2951 - 2963 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
Mengjuan Wei , Anru Guo , Yixian Wu . Acta Polymerica Sinica , 2017 . ( 3 ): 506 - 515 . http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2017.16152.
魏 梦娟 , 郭 安儒 , 吴 一弦 . 高分子学报 , 2017 . ( 3 ): 506 - 515 . http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2017.16152.
M Vukomanović , U Repnik , T Zavašnikbergant . ACS Biomater Sci Eng , 2015 . 1 ( 10 ): 935 - 946 . DOI:10.1021/acsbiomaterials.5b00170http://doi.org/10.1021/acsbiomaterials.5b00170.
D M Tobaldi , C Piccirillo , R C Pullar . J Phys Chem C , 2014 . 118 ( 9 ): 137 - 146 . http://www.mendeley.com/research/silvermodified-nanotitania-antibacterial-agent-photocatalyst/.
M U Kahveci , Y Yagci . Macromolecules , 2011 . 44 ( 14 ): 5569 - 5572 . DOI:10.1021/ma200783xhttp://doi.org/10.1021/ma200783x.
F Kasapoglu , Y Yagci . Macromol Rapid Commun , 2002 . 23 ( 9 ): 567 - 570 . DOI:10.1002/1521-3927(20020601)23:9<567::AID-MARC567>3.0.CO;2-8http://doi.org/10.1002/1521-3927(20020601)23:9<567::AID-MARC567>3.0.CO;2-8.
E Nehlig , R Schneider , L Vidal , L Balan . Langmuir , 2012 . 28 ( 51 ): 17795 - 17802 . DOI:10.1021/la303923phttp://doi.org/10.1021/la303923p.
M A Tehfe , R Jamois , P Cousin , S Elkoun , M Robert . Langmuir , 2015 . 31 ( 14 ): 4305 - 4313 . DOI:10.1021/la504518chttp://doi.org/10.1021/la504518c.
Y D Li , Y P He . Chinese J Chem Phys , 1999 . ( 4 ): 465 - 468.
Z H Mbhele , M G Salemane , C van Sittert , J M Nedeljkovic , V Djokovic , A S Luyt . Chem Mater , 2003 . 15 5019 - 5024 . DOI:10.1021/cm034505ahttp://doi.org/10.1021/cm034505a.
J Compton , D Thompson , D Kranbuehl , S Ohl , O Gain , L David , E Espuche . Polymer , 2006 . 47 5303 - 5313 . DOI:10.1016/j.polymer.2006.05.048http://doi.org/10.1016/j.polymer.2006.05.048.
O Eksik , M A Tasdelen , A T Erciyes , Y Yagci . Compos Interfaces , 2010 . 17 357 - 369 . DOI:10.1163/092764410X495289http://doi.org/10.1163/092764410X495289.
L Balan , J P Malval , R Schneider , D Le Nouen , D J Lougnot . Polymer , 2010 . 51 1363 - 1369 . DOI:10.1016/j.polymer.2009.05.003http://doi.org/10.1016/j.polymer.2009.05.003.
A G Destaye , C K Lin , C K Lee . ACS Applied Mater Interfaces , 2013 . 5 ( 11 ): 4745 - 4752 . DOI:10.1021/am401730xhttp://doi.org/10.1021/am401730x.
Q B Wei , F Fu , Y Q Zhang . Adv Polym Technol , 2013 . 32 624 - 632 . DOI:10.1002/adv.v32.1shttp://doi.org/10.1002/adv.v32.1s.
Cheng Zhingqiang(程志强), Kang Lijuan(康立娟), Zhu Guangqian(朱广千), Liu Wei(刘伟), Zhao Li(赵利). CN patent 103225175 A. 2013-05-12
P F Yan , A R Guo , Q Liu , Y X Wu . J Polym Sci, Part A:Polym Chem , 2012 . 50 ( 16 ): 3383 - 3392 . DOI:10.1002/pola.v50.16http://doi.org/10.1002/pola.v50.16.
Yixian Wu , Qi Zhou , Jie Du , Nan Wang . Acta Polymerica Sinica , 2017 . ( 3 ): 1047 - 1057 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gfxb201707004&dbname=CJFD&dbcode=CJFQ.
吴 一弦 , 周 琦 , 杜 杰 , 王 楠 . 高分子学报 , 2017 . ( 3 ): 1047 - 1057 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gfxb201707004&dbname=CJFD&dbcode=CJFQ.
U Ojha , R Rajkhowa , S R Agnihotra , R Faust . Macromolecules , 2008 . 41 ( 11 ): 3832 - 3841 . DOI:10.1021/ma7027209http://doi.org/10.1021/ma7027209.
Dexin Tan , Yanli Wang , Guocai Xu . Chinese J Inorg Chem , 2006 . 22 ( 10 ): 1921 - 1922 . DOI:10.3321/j.issn:1001-4861.2006.10.037http://doi.org/10.3321/j.issn:1001-4861.2006.10.037.
谭 德新 , 王 艳丽 , 徐 国财 . 无机化学学报 , 2006 . 22 ( 10 ): 1921 - 1922 . DOI:10.3321/j.issn:1001-4861.2006.10.037http://doi.org/10.3321/j.issn:1001-4861.2006.10.037.
N Aleksandra , Krklješ , T Milena , Marinović-Cincović , M Zorica , Kacarevic-Popovic . Eur Polym J , 2007 . 43 ( 6 ): 2171 - 2176 . DOI:10.1016/j.eurpolymj.2007.03.023http://doi.org/10.1016/j.eurpolymj.2007.03.023.
0
Views
20
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution