Poly(L-lactic acid) (PLLA) is a biodegradable and biocompatible material used in many fields
such as packaging
textile and drug delivery. The low crystallization rate and poor toughness are two major drawbacks for its processing and high-performance applications. In this study
-PDLA) were used to modify the structure and property of PLLA. PLLA/PDLA-
b
-PEG-
b
-PDLA blends were prepared by melt blending
and their thermal and mechanical properties were systematically studied by thermal gravimetric analysis (TGA)
differential scanning calorimetry (DSC) and temperature-variable tensile tests. To understand the structure evolution
the crystallization behavior of the blends during stretching was investigated by
in situ
wide angle X-ray scattering (WAXS). The results showed that the addition of PDLA-
b
-PEG-
b
-PDLA had no detrimental effect on the thermal stability of PLLA. By virtue of the nucleation capacity of the stereo-complex crystals formed between PLLA and PDLA chains
the crystallization rate of the
α
crystals of the PLLA matrix was improved remarkably compared with that of pure PLLA. When stretched at room temperature (30 °C)
the modified PLLA samples displayed brittle fracture. With the stretching temperature increased to 50 °C
both PLLA and PLLA/PDLA-
b
-PEG-
b
-PDLA (95/5) exhibited brittle fracture. However
the blends showed clear yielding and ductile deformation with an elongation at break as high as 200% when the content of the triblock copolymer was above 5%. With the stretching temperature further increased to 80 °C
the crystallization of
α
crystals in the PLLA/ PDLA-
b
-PEG-
b
-PDLA blends was significantly enhanced during the stretching process. The critical strain
where
α
crystals appeared in the blend
decreased from 400% in pure PLLA to less than 50%. The stereo-complex crystallites had no change during the stretching process. The above results indicated that the triblock copolymer consisting of PDLA and PEG chains was an excellent candidate as PLLA modifier with dual effects of promoting crystallization and improving toughness.
Liu Y L, Shao J, Sun J R, Bian X C . Polym Degrad Stab , 2014 . 101 10 - 17 . DOI:10.1016/j.polymdegradstab.2014.01.023http://doi.org/10.1016/j.polymdegradstab.2014.01.023 .
XiongZujiang(熊祖江), Zhang Xiuqin(张秀芹), Liu Guoming(刘国明). Chem J Chinese U(高等学校化学学报), 2013, (5): 1288-1294
Rathi S R, Ng D, Coughlin E B . Macromol Chem Phys , 2014 . 215 ( 4 ): 320 - 326 . DOI:10.1002/macp.v215.4http://doi.org/10.1002/macp.v215.4 .
Saeidlou S, Huneault M A, Li H . Prog Polym Sci , 2012 . 37 ( 2 ): 1657 - 1677.
Weber C J, Haugaard V, Festersen R . Food Addit Contam , 2001 . 19 172 - 177.
Rathi S, Chen X L, Coghlin E B . Polymer , 2011 . 52 4184 - 4188 . DOI:10.1016/j.polymer.2011.07.032http://doi.org/10.1016/j.polymer.2011.07.032 .
Han L L, Yu C T, Zhou J, Shan G R, Bao Y Z . Polymer , 2016 . 103 376 - 386 . DOI:10.1016/j.polymer.2016.09.073http://doi.org/10.1016/j.polymer.2016.09.073 .
Zhang X Q, Konrad Schneider, Liu G M . Polymer , 2011 . 52 4141 - 4149 . DOI:10.1016/j.polymer.2011.07.003http://doi.org/10.1016/j.polymer.2011.07.003 .
Zhan X J, Shi X T, Zhang G C . Polymer , 2017 . 9 ( 3 ): 107 DOI:10.3390/polym9030107http://doi.org/10.3390/polym9030107 .
Stoclet G . Polymer , 2016 . ( 99 ): 231 - 239.
Shao J, Xiang S, Bian X C, Sun J R, Li G, Chen X S . Ind Eng Chem Res , 2015 . 54 ( 7 ): 2246 - 2253 . DOI:10.1021/ie504484bhttp://doi.org/10.1021/ie504484b .
Tsuji H, Takai H, Fukada N, Takikawa H . Macromol Mater Eng , 2006 . 291 ( 4 ): 325 - 335 . DOI:10.1002/(ISSN)1439-2054http://doi.org/10.1002/(ISSN)1439-2054 .
Anderson K S, Hillmyer M A . Polymer , 2006 . 47 ( 6 ): 2030 - 2035 . DOI:10.1016/j.polymer.2006.01.062http://doi.org/10.1016/j.polymer.2006.01.062 .
Sawai D, Tsugane Y, Tamada M . J Polym Sci, Part B: Polym Phys , 2007 . 45 2632 - 3629 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488 .
Yin Y A, Song Y, Xiong Z J, Zhang X Q . J Appl Polym Sci , 2016 . 133 ( 10 ): 43015 .
Wei X F, Bao R Y, Cao Z Q, Yang W, Xie B H, Yang M B . Macromolecules , 2014 . 47 1439 - 1448 . DOI:10.1021/ma402653ahttp://doi.org/10.1021/ma402653a .
Zhang J M, Wang S W, Zhao D Z . J Appl Polym Sci , 2017 . 134 ( 43 ): 45193 .
Chen Z M, Liu Y L . Mater Lett , 2015 . 155 94 - 96 . DOI:10.1016/j.matlet.2015.04.124http://doi.org/10.1016/j.matlet.2015.04.124 .
Song Y, Wang D J . ACS Sustain Chem Eng , 2015 . 3 1492 - 1500 . DOI:10.1021/acssuschemeng.5b00214http://doi.org/10.1021/acssuschemeng.5b00214 .
Preparation of Low-shrinkage Polypropylene by Tailoring Crystallization
Preparation of High Performance Dielectric Elastomers by Tailoring the Aggregation Structure of Polyurethane
The Effect of Lamellar Thickness of iPP on the Formation of Trigonal Modification of PB-1 under Confinement Environment
Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)
Study on the Relationship between the Orientation Structure of Linear Low-density Polyethylene Cast Film and Barrier Properties
Related Author
No data
Related Institution
SINOPEC Beijing Research Institute of Chemical Industry
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology
Bohai Rim Collaborative Innovation Center on Green Chemical Application Technology, Department of Chemical Engineering, Weifang Vocational College