浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
Published:20 December 2017,
Received:31 July 2017,
Revised:30 August 2017,
扫 描 看 全 文
Jun Liu, Li-xiang Wang. Polymer Electron Acceptors Containing Boron-Nitrogen Coordination Bond (B←N) for All-Polymer Solar Cells. [J]. Acta Polymerica Sinica (12):1856-1869(2017)
Jun Liu, Li-xiang Wang. Polymer Electron Acceptors Containing Boron-Nitrogen Coordination Bond (B←N) for All-Polymer Solar Cells. [J]. Acta Polymerica Sinica (12):1856-1869(2017) DOI: 10.11777/j.issn1000-3304.2017.17205.
全高分子太阳能电池用高分子电子给体材料和高分子电子受体材料的共混物作为光电活性层,是光伏技术的重要发展方向之一.鉴于高分子受体材料的种类和数量都很少,开发新型高分子受体材料是发展全高分子太阳能电池的关键.有别于采用酰亚胺结构设计高分子受体材料的传统思路,我们从硼氮配位键降低
π
-共轭体系最低未占分子轨道(LUMO)能级的基本原理出发,在国际上率先提出了用硼氮配位键设计高分子受体材料的策略.本文旨在总结我们在含硼氮配位键的高分子受体材料方向的研究进展.首先阐明了硼氮配位键降低LUMO能级的原理,揭示出硼氮配位键在重复单元和高分子中的3个作用,然后介绍了硼氮配位键高分子受体材料的2种分子设计方法,阐明了硼氮配位键高分子受体材料在LUMO轨道和LUMO能级调控方面的特征,介绍了硼氮配位键高分子受体材料的吸收光谱调控、能级结构调控和电子迁移率调控,实现了全高分子太阳能电池的器件效率从2015年的0.14%到目前的
>
6%的转变.最后,展望了硼氮配位键高分子受体材料在高性能全高分子太阳能电池方面的前景和重点发展方向.
All-polymer solar cells (all-PSCs) use blend of polymer electron donor and polymer electron acceptor as active layer. There are much less polymer electron acceptors than polymer electron donors. In contrast to the molecular design of typical polymer acceptors using imide structure
we proposed in 2015 to design polymer acceptors using boron-nitrogen coordination bond (B←N). This paper summarizes our recent progress on polymer acceptors containing B←N unit. At first
we elucidate the principle of B←N unit to downshift LUMO/HOMO energy levels of conjugated polymers. Then we disclose the three effects of B←N unit on the opto-electronic properties of the repeating units of conjugated polymers
i.e
. downshifting the LUMO/HOMO energy levels
redshifting the absorption spectra and fixing the planar configuration. We discuss the two molecular design approaches to develop polymer electron acceptors containing B←N unit. One is to copolymerize a building block containing one B←N unit with another electron-deficient building block to develop A-A type conjugated polymers. The other is to copolymerize a building block containing two B←N units with another electron-rich building block to develop D-A type conjugated polymers. The feature of the polymer acceptors containing B←N unit is their delocalized LUMO and tunable LUMO energy levels
which lead to all-PSC devices with high open-circuit voltage. We also show how to use molecular design to tune the key opto-electronic properties of the polymer acceptors containing B←N unit. The UV-Vis absorption spectra can be tuned by copolymerizing with some narrow bandgap units. The LUMO/HOMO energy levels can be tuned by changing the electron-donating/withdrawing substitutes on the copolymerization unit. The electron mobilities can be enhanced by decreasing the
π-π
stacking distance or using pseudo-straight configuration of the polymer backbone. These molecular designs lead to an improvement of all-PSC power conversion efficiency from 0.15% in 2015 to
>
6% in 2017. Finally
we outlook the future of high efficiency all-PSC devices based on polymer acceptors containing B←N unit.
硼氮配位键高分子太阳能电池电子受体能级结构电子迁移率
All-polymer solar cellsElectron acceptorBoron-nitrogen coordination bondEnergy levelsElectron mobility
G Yu , J Gao , J C Hummelen , F Wudl , A J Heeger . Science , 1995 . 270 1789 - 1791 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789.
S Zhang , L Ye , W Zhao , B Yang , Q Wang , J H Hou . Sci China Chem , 2015 . 58 248 - 256 . DOI:10.1007/s11426-014-5273-xhttp://doi.org/10.1007/s11426-014-5273-x.
Y J He , Y F Li . Phys Chem Chem Phys , 2011 . 13 1970 - 1983 . DOI:10.1039/C0CP01178Ahttp://doi.org/10.1039/C0CP01178A.
Y Z Lin , J Y Wang , Z G Zhang , H T Bai , Y F Li , D B Zhu , X W Zhan . Adv Mater , 2015 . 27 1170 - 1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317.
Z Li , K Jiang , G Yang , J Y L Lai , T Ma , J Zhao , W Ma , H Yan . Nat Commun , 2016 . 7 13094 DOI:10.1038/ncomms13094http://doi.org/10.1038/ncomms13094.
D Sun , D Meng , Y H Cai , B B Fan , Y Li , W Jiang , L J Huo , Y M Sun , Z H Wang . J Am Chem Soc , 2015 . 137 11156 - 11162 . DOI:10.1021/jacs.5b06414http://doi.org/10.1021/jacs.5b06414.
W Zhao , D Qian , S Zhang , S Li , O Inganäs , F Gao , J Hou . Adv Mater , 2016 . 28 4734 - 4739 . DOI:10.1002/adma.v28.23http://doi.org/10.1002/adma.v28.23.
W Zhao , S Li , H Yao , S Zhang , Y Zhang , B Yang , J Hou . J Am Chem Soc , 2017 . 139 7148 - 7151 . DOI:10.1021/jacs.7b02677http://doi.org/10.1021/jacs.7b02677.
X W Zhan , Z A Tan , B Domercq , Z S An , X Zhang , S Barlow , Y F Li , D B Zhu , B Kippelen , S R Marder . J Am Chem Soc , 2007 . 129 7246 - 7247 . DOI:10.1021/ja071760dhttp://doi.org/10.1021/ja071760d.
L Gao , Z G Zhang , L W Xue , J Min , J Q Zhang , Z X Wei , Y F Li . Adv Mater , 2016 . 28 1884 - 1890 . DOI:10.1002/adma.201504629http://doi.org/10.1002/adma.201504629.
B Fan , L Ying , Z Wang , B He , X F Jiang , F Huang , Y Cao . Energy Environ Sci , 2017 . 10 1243 - 1251 . DOI:10.1039/C7EE00619Ehttp://doi.org/10.1039/C7EE00619E.
Y Zhou , T Kurosawa , W Ma , Y Guo , L Fang , K Vandewal , Y Diao , C Wang , Q Yan , J Reinspach , J Mei , A L Appleton , G I Koleilat , Y Gao , S C B Mannsfeld , A Salleo , H Ade , D Zhao , Z Bao . Adv Mater , 2014 . 26 3767 - 3772 . DOI:10.1002/adma.v26.22http://doi.org/10.1002/adma.v26.22.
J Yang , B Xiao , K Tajima , M Nakano , K Takimiya , A Tang , E Zhou . Macromolecules , 2017 . 50 3179 - 3185 . DOI:10.1021/acs.macromol.7b00414http://doi.org/10.1021/acs.macromol.7b00414.
W Li , W S C Roelofs , M Turbiez , M M Wienk , R A J Janssen . Adv Mater , 2014 . 26 3304 - 3309 . DOI:10.1002/adma.v26.20http://doi.org/10.1002/adma.v26.20.
H Huang , N Zhou , R P Ortiz , Z Chen , S Loser , S Zhang , X Guo , J Casado , J T L Navarrete , X Yu , A Facchetti , T J Marks . Adv Funct Mater , 2014 . 24 2782 - 2793 . DOI:10.1002/adfm.v24.19http://doi.org/10.1002/adfm.v24.19.
Y Guo , Y Li , O Awartani , J Zhao , H Han , H Ade , D Zhao , H Yan . Adv Mater , 2016 . 28 8483 - 8489 . DOI:10.1002/adma.v28.38http://doi.org/10.1002/adma.v28.38.
Y Guo , Y Li , O Awartani , H Han , J Zhao , H Ade , H Yan , D Zhao . Adv Mater , 2017 . 29 1700309 DOI:10.1002/adma.201700309http://doi.org/10.1002/adma.201700309.
S Li , H Zhang , W Zhao , L Ye , H Yao , B Yang , S Zhang , J Hou . Adv Energy Mater , 2016 . 6 1501991 DOI:10.1002/aenm.201501991http://doi.org/10.1002/aenm.201501991.
C Dou , Z Ding , Z Zhang , Z Xie , J Liu , L Wang . Angew Chem Int Ed , 2015 . 54 3648 - 3652 . DOI:10.1002/anie.201411973http://doi.org/10.1002/anie.201411973.
C Dou , X Long , Z Ding , Z Xie , J Liu , L Wang . Angew Chem Int Ed , 2016 . 55 1436 - 1440 . DOI:10.1002/anie.201508482http://doi.org/10.1002/anie.201508482.
R Zhao , C Dou , Z Xie , J Liu , L Wang . Angew Chem Int Ed , 2016 . 55 5313 - 5317 . DOI:10.1002/anie.201601305http://doi.org/10.1002/anie.201601305.
X Long , Z Ding , C Dou , J Zhang , J Liu , L Wang . Adv Mater , 2016 . 28 6504 - 6508 . DOI:10.1002/adma.201601205http://doi.org/10.1002/adma.201601205.
C Dou , J Liu , L Wang . Sci China Chem , 2017 . 60 450 - 459 . DOI:10.1007/s11426-016-0503-xhttp://doi.org/10.1007/s11426-016-0503-x.
A Wakamiya , T Taniguchi , S Yamaguchi . Angew Chem Int Ed , 2006 . 45 3170 - 3173 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
D Li , K Wang , S Huang , S Qu , X Liu , Q Zhu , H Zhang , Y Wang . J Mater Chem , 2011 . 21 15298 - 15304 . DOI:10.1039/c1jm12498fhttp://doi.org/10.1039/c1jm12498f.
P G Campbell , A J V Marwitz , S Y Liu . Angew Chem Int Ed , 2012 . 51 6074 - 6092 . DOI:10.1002/anie.201200063http://doi.org/10.1002/anie.201200063.
X Y Wang , H R Lin , T Lei , D C Yang , F D Zhuang , J Y Wang , S C Yuan , J Pei . Angew Chem Int Ed , 2013 . 52 3117 - 3120 . DOI:10.1002/anie.201209706http://doi.org/10.1002/anie.201209706.
X Y Wang , F D Zhuang , R B Wang , X C Wang , X Y Cao , J Y Wang , J Pei . J Am Chem Soc , 2014 . 136 3764 - 3767 . DOI:10.1021/ja500117zhttp://doi.org/10.1021/ja500117z.
Z Zhang , Z Ding , C Dou , J Liu , L Wang . Polym Chem , 2015 . 6 8029 - 8035 . DOI:10.1039/C5PY01389Ehttp://doi.org/10.1039/C5PY01389E.
R Zhao , C Dou , J Liu , L Wang . Chinese J Polym Sci , 2017 . 35 198 - 206 . DOI:10.1007/s10118-017-1878-9http://doi.org/10.1007/s10118-017-1878-9.
L Ye , S Zhang , L Huo , M Zhang , J Hou . Acc Chem Res , 2014 . 47 1595 - 1603 . DOI:10.1021/ar5000743http://doi.org/10.1021/ar5000743.
R Zhao , Z Bi , C Dou , W Ma , Y Han , J Liu , L Wang . Macromolecules , 2017 . 50 3171 - 3178 . DOI:10.1021/acs.macromol.7b00386http://doi.org/10.1021/acs.macromol.7b00386.
Z Ding , X Long , C Dou , J Liu , L Wang . Chem Sci , 2016 . 7 6197 - 6202 . DOI:10.1039/C6SC01756Hhttp://doi.org/10.1039/C6SC01756H.
Z Ding , X Long , B Meng , K Bai , C Dou , J Liu , L Wang . Nano Energy , 2017 . 32 216 - 224 . DOI:10.1016/j.nanoen.2016.12.041http://doi.org/10.1016/j.nanoen.2016.12.041.
Z Zhang , Z Ding , X Long , C Dou , J Liu , L Wang . J Mater Chem C , 2017 . 5 6812 - 6819 . DOI:10.1039/C7TC01996Chttp://doi.org/10.1039/C7TC01996C.
A Polman , M Knight , E C Garnett , B Ehrler , W C Sinke . Science , 2016 . 352 307 - 317.
W Li , K H Hendriks , A Furlan , M M Wienk , R A J Janssen . J Am Chem Soc , 2015 . 137 2231 - 2234 . DOI:10.1021/ja5131897http://doi.org/10.1021/ja5131897.
X Long , N Wang , Z Ding , C Dou , J Liu , L Wang . J Mater Chem C , 2016 . 4 9961 - 9967 . DOI:10.1039/C6TC03652Jhttp://doi.org/10.1039/C6TC03652J.
X Long , Z Ding , C Dou , J Liu , L Wang . Mater Chem Front , 2016 . 1 852 - 858.
X Long , Y Gao , H Tian , C Dou , D Yan , Y Geng , J Liu , L Wang . Chem Commun , 2017 . 53 1649 - 1652 . DOI:10.1039/C6CC09684Khttp://doi.org/10.1039/C6CC09684K.
R Zhao , Y Min , C Dou , J Liu , L Wang . Chem Eur J , 2017 . 23 9486 - 9490 . DOI:10.1002/chem.v23.40http://doi.org/10.1002/chem.v23.40.
0
Views
29
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution