Naphthalene diimides (NDIs) as excellent organic semiconductors are difficult to be synthesized
because it is difficult to separate the key intermediate 2
6-dibromo-NDI from 2-bromo-NDI. A highly efficient synthesis of 2
6-dibromo-NDI was developed in this work. Perfluoroalkylated NDIs are excellent electron transport materials
while they are unsuitable for solution process because of their poor solubility. Since semi-perfluoroalkylated conjugated compounds have much better solubility than their perfluoroalkylated counterparts
different semi-perfluoroalkyl groups were introduced to the N-terminals of NDIs
and six conjugated polymers with donor-acceptor structure were synthesized by multi-step reactions. The chemical structure
optical properties
electrochemical properties
thermal stability
contact angle
and self-assembly properties of the target polymers were studied. The results demonstrate that suitable semi-pefluoroalkyl groups are critical to the synthesis of the soluble polymers. All these polymers are readily soluble in organic solvents. Solid absorption of these polymers red-shifts compared to their solution absorption
indicating aggregation in solid state. The absorption red-shifts obviously by increasing electron donating ability of the donor unit. The optical bandgaps of the semi-perfluoroalkylated polymers are 0.3 eV lower than those of the regular polymers. The LUMO energy levels of these polymers are as low as −3.84 ~ −3.90 eV
indicating their strong electron accepting ability. The LUMO energy levels of the semi-perfluoroalkylated polymers are about 0.1 eV lower than those of NDI polymers with regular alkyl groups
which is attributed to the strong electron-withdrawing properties of their fluorine atoms. With simple spin-coating and evaporation
the polymer
P5
can be self-assembled into ordered fibers with 500 nm in length and 30 nm in width
which is in favor of charge transfer. All these polymers have good thermal stability with their decomposing temperature above 375 °C. Their higher fluorine ratio and higher contact angles are the reflection of their water repellent properties. The mobility of these polymers is measured with space charge-limiting current (SCLC) method using the device structure of ITO/ZnO/polymer/Al
and all these polymers prove to be electron transporting materials.
Culloch I M, Heeney M, Bailey C, Genevicius K, Donald I M, Shkunov M, Spatrowe D, Tierney S, Wagner R, Zhang W M, Michael L, Kline R J, Michael D, Mcgehee M D, Toney M F . Nat Mater , 2006 . 5 328 - 333 . DOI:10.1038/nmat1612http://doi.org/10.1038/nmat1612 .
Chen Yiwang(陈义旺), Nie Huarong(聂华荣), Chen Lie(谌烈), Kang Yantang(康燕镗). Acta Polymerica Sinica(高分子学报), 2005, (6) : 807-812
Kang B, Lim S, Lee W H, Jo S B, Cho K . Adv Mater , 2013 . 25 5856 - 5862 . DOI:10.1002/adma.201302358http://doi.org/10.1002/adma.201302358 .
Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chengyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2016, (11): 1468-1481
Bin Haijun(宾海军), Li Yongfang(李永舫). Acta Polymerica Sinica(高分子学报), 2017, (9): 1444-1461
Cho J H, Lee J, Xia Y, Kim B S, He Y Y, Renn M J, Frisbie T P . Nat Mater , 2008 . 7 900 - 906 . DOI:10.1038/nmat2291http://doi.org/10.1038/nmat2291 .
Kang B, Jang M, Chung Y, Kim H, Sang K K, Joon K O, Cho K . Nat Commun , 2014 . 5 4752 - 4758 . DOI:10.1038/ncomms5752http://doi.org/10.1038/ncomms5752 .
Chou K W, Yan B Y, Li R P, Li E Q, Zhao K, Dalaver H A, Steven A, Robert G, Alan B, Sigurdur T T, Hexemer A, Aram A . Adv Mater , 2013 . 25 1923 - 1929 . DOI:10.1002/adma.v25.13http://doi.org/10.1002/adma.v25.13 .
Yang Jie(杨杰), Chen Jinyang(陈金佯), Sun Yunlong(孙云龙), Shi Longxian(施龙献), Gou Yunlong(郭云龙), Wang Shuai(王帅), Liu Yunqi(刘云圻) . Acta Polymerica Sinica(高分子学报), 2017(7) : 1082-1096
Ma Feng(马峰),Wang Shirong(王世荣), Guo Junjie(郭俊杰), Li Xianggao(李祥高). Chinese J Org Chem(有机化学), 2012, 32: 497-510
Hunter S, Chen J, Anthopoulos T D . Adv Funct Mater , 2014 . 24 5969 - 5976 . DOI:10.1002/adfm.201401087http://doi.org/10.1002/adfm.201401087 .
Katz H E, Johnson J, Lovinger A J, Li W J . J Am Chem Soc , 2000 . 122 7787 - 7792 . DOI:10.1021/ja000870ghttp://doi.org/10.1021/ja000870g .
Katz H E, Lovinger A J, Johnson J, Kloc C, Li W, Lin Y Y, Dodabalapur A . Nature , 2000 . 404 478 - 481 . DOI:10.1038/35006603http://doi.org/10.1038/35006603 .
Zhang F J, Hu Y B, Torben S, Di C A, Gao K X, Christopher R M, Thomsen L, Stefan C B, Yuan W, Henning S, Zhu D B . J Am Chem Soc , 2013 . 135 2338 - 2349 . DOI:10.1021/ja311469yhttp://doi.org/10.1021/ja311469y .
Lee C Y, Kang H B, Lee W H, Kim K H, Woo H Y, Wang C, Kim B J . Adv Mater , 2015 . 27 2466 - 2471 . DOI:10.1002/adma.201405226http://doi.org/10.1002/adma.201405226 .
Bhosale S V, Jani C H, Langford S J . Chem Soc Rev , 2008 . 37 331 - 342 . DOI:10.1039/B615857Ahttp://doi.org/10.1039/B615857A .
Lei T, Wang J Y, Pei J . Chem Mater , 2014 . 26 594 - 603 . DOI:10.1021/cm4018776http://doi.org/10.1021/cm4018776 .
Mei J G, Bao Z N . Chem Mater , 2014 . 26 604 - 615 . DOI:10.1021/cm4020805http://doi.org/10.1021/cm4020805 .
Cheng X H, Prehm M, Das M K, Kain S, Baumeister U, Diele S, Leine D, Blume A, Tschierske C . J Am Chem Soc , 2003 . 125 10977 - 10996 . DOI:10.1021/ja036213ghttp://doi.org/10.1021/ja036213g .
Clark C G, Floudas G A, Lee Y J, Graf R, Spiess H W, Mullen K . J Am Chem Soc , 2009 . 131 8537 - 8547 . DOI:10.1021/ja900999fhttp://doi.org/10.1021/ja900999f .
Kang B, Kim R, Lee S B, Kwon S K, Kim Y H, Cho K . J Am Chem Soc , 2016 . 138 3679 - 3686 . DOI:10.1021/jacs.5b10445http://doi.org/10.1021/jacs.5b10445 .
Lee W, Lee C, Yu H, Kim D J, Wang C, Woo H Y, Kim B J . Adv Funct Mater , 2016 . 26 1543 - 1553 . DOI:10.1002/adfm.v26.10http://doi.org/10.1002/adfm.v26.10 .
Zong L, Xie Y, Wang C, Li J M, Li Q, Li Z . Chem Commun , 2016 . 52 11496 - 11499 . DOI:10.1039/C6CC06176Ahttp://doi.org/10.1039/C6CC06176A .
Jung B J, Lee K, Sun J, Andreou A G, Katz H E . Adv Funct Mater , 2010 . 20 2930 - 2944 . DOI:10.1002/adfm.201000655http://doi.org/10.1002/adfm.201000655 .
Banikhaled M O, Becker J D, Koppang M, Sun H R . Cryst Growth Des , 2016 . 16 1869 - 1878 . DOI:10.1021/acs.cgd.5b01291http://doi.org/10.1021/acs.cgd.5b01291 .
Xiong K, Xiao Y . Tetrahedron Lett , 2013 . 54 3171 - 3175 . DOI:10.1016/j.tetlet.2013.04.030http://doi.org/10.1016/j.tetlet.2013.04.030 .
Chen Z H, Zheng Y, Yan H, Facchetti A . J Am Chem Soc , 2009 . 131 8 - 9 . DOI:10.1021/ja805407ghttp://doi.org/10.1021/ja805407g .
Gou X G, Watson M D . Org Lett , 2008 . 10 5333 - 5336 . DOI:10.1021/ol801918yhttp://doi.org/10.1021/ol801918y .
Yan H, Chen Z H, Zheng Y, Newan C, Quinn J R, Kastler M, Facchetti A . Nature , 2009 . 457 679 - 686 . DOI:10.1038/nature07727http://doi.org/10.1038/nature07727 .
Durban M M, Christine K L, Peter D K . Macromolecules , 2010 . 43 6348 - 6352 . DOI:10.1021/ma100997ghttp://doi.org/10.1021/ma100997g .
Choi J, Kim K H, Yu H, Lee C, Kang H, Song I, Kim Y, Oh J H, Kim B . Chem Mater , 2015 . 27 5230 - 5237 . DOI:10.1021/acs.chemmater.5b01274http://doi.org/10.1021/acs.chemmater.5b01274 .
Sirringhaus H, Tessler N, Friend R H . Science , 1998 . 280 1741 - 1744 . DOI:10.1126/science.280.5370.1741http://doi.org/10.1126/science.280.5370.1741 .
Y Zhou,Q Yan, D Zhao, J Pei . J Mater Chem , 2013 . 1 6609 - 6613 . DOI:10.1039/c3ta10864chttp://doi.org/10.1039/c3ta10864c .
Cheng Y J, Hsieh C H, Li P J, Hsu C S . Adv Funct Mater , 2011 . 21 1723 - 1732 . DOI:10.1002/adfm.201002502http://doi.org/10.1002/adfm.201002502 .
Recent Progress of Conjugated Polymers Containing Quinoidal Structure
Design and Synthesis of Wide-bandgap Conjugated Polymers Based on 3,4-Dicyanothiophene for Efficient Organic Solar Cells
Research Progress on Aggregation Structure of Conjugated Polymers in Multicomponent Blends
Direct Arylation Polycondensation Synthesis of High Mobility Conjugated Polymers
Ladder-type Indenefluorenylene-based Conjugated Polymers with RGB Emission as Efficient Gain Media for Organic Lasers: Design, Synthesis, and Optical Gain Properties
Related Author
No data
Related Institution
School of Materials Science and Engineering, Tianjin University
Institute of Materials for Optoelectronics and New Energy, School of Materials Science and Engineering, Wuhan Institute of Technology
Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology
School of Textile Materials and Engineering, Wuyi University
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology