Semicrystalline polymers are composed of crystalline and amorphous regions. The crystalline region plays a key role in determining their mechanical properties by providing stiff crosslinking domains. Understanding how the microscopic mechanical properties of the polymer single crystals are related to their macroscopic mechanical properties is significant to reveal the fundamental elastic and plastic deformations for advanced polymer engineering materials. The study of mesoscopic mechanical properties of polymer single crystal is key to this issue. Here
by using atomic force microscopy (AFM) imaging and force spectroscopy together
the mesoscopic mechanical properties of PEO single-crystal were investigated by squeezing PEO molecules out of the crystal phase using AFM tip. After elastically deformed
PEO single-crystal layer was penetrated by AFM tip at several tens of nN.The breakthrough force increased with the increase of the tip radius and PEO-solvent interfacial energy. The breakthrough force shows a linear correlation with the logarithm of the approaching velocity
which is fitted very well by molecular model. The energy for squeezing PEO chains out of their single crystal corresponds to the area enclosed by the approaching and retracting curves. Moreover
the energy for pulling a single PEO chain from its single crystal is calculated from the typical pulling curves. The energy for squeezing a same number of PEO chains out of their single crystal is about 23.4% lower than pulling. This energy comparison is helpful for bridging the microscopic and the mesoscopic mechanical properties. These results indicate that the combined techniques represent a novel experimental tool to investigate mesoscopic mechanical properties of the polymer materials in their condensed states.
关键词
聚氧乙烯单晶原子力显微镜介观力学性质
Keywords
PEO single crystalAtomic force microscopyMesoscopic mechanical properties
references
Wang H P, Keum J K, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A . Science , 2009 . 323 757 - 760 . DOI:10.1126/science.1164601http://doi.org/10.1126/science.1164601 .
Goffri S, Müller C, Stingelin-Stutzmann N, Breiby D W, Radano C P, Andreasen J W, Thompson R, Janssen R A J, Nielsen M M, Smith P, Sirringhaus H . Nat Mater , 2006 . 5 950 - 956 . DOI:10.1038/nmat1779http://doi.org/10.1038/nmat1779 .
Hiss R, Hobeika S, Lynn C, Strobl G . Macromolecules , 1999 . 32 4390 - 4403 . DOI:10.1021/ma981776bhttp://doi.org/10.1021/ma981776b .
Men Y F, Rieger J, Strobl G . Phys Rev Lett , 2003 . 91 095502 DOI:10.1103/PhysRevLett.91.095502http://doi.org/10.1103/PhysRevLett.91.095502 .
Schrauwen B A G, Janssen R P M, Govaet L E, Meijer H E H . Macromolecules , 2004 . 37 6069 - 6078 . DOI:10.1021/ma035279thttp://doi.org/10.1021/ma035279t .
Fischer S, Jiang Z, Men Y F . J Phys Chem B , 2011 . 115 13803 - 13808 . DOI:10.1021/jp204998phttp://doi.org/10.1021/jp204998p .
Hugel T, Holland N B, Cattani A, Moroder L, Seitz M, Gaub H E . Science , 2002 . 296 1103 - 1106 . DOI:10.1126/science.1069856http://doi.org/10.1126/science.1069856 .
Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E . Science , 1997 . 276 1109 - 1112 . DOI:10.1126/science.276.5315.1109http://doi.org/10.1126/science.276.5315.1109 .
Zheng P, Li H B . J Am Chem Soc , 2011 . 133 6791 - 6798 . DOI:10.1021/ja200715hhttp://doi.org/10.1021/ja200715h .
Zhang W K, Machon C, Orta A, Phillips N, Roberts C J, Allen S, Soultanas P . J Mol Biol , 2008 . 377 706 - 714 . DOI:10.1016/j.jmb.2008.01.067http://doi.org/10.1016/j.jmb.2008.01.067 .
Liu N N, Peng B, Lin Y, Su Z H, Niu Z W, Wang Q, Zhang W K, Li H B, Shen J C . J Am Chem Soc , 2011 . 132 11036 - 11038.
Zhang W K, Zhang X . Prog Polym Sci , 2003 . 28 1271 - 1295 . DOI:10.1016/S0079-6700(03)00046-7http://doi.org/10.1016/S0079-6700(03)00046-7 .
Popa I, Zhang B Z, Maroni P, Schluter A D, Borkovec M . Angew Chem Int Ed , 2010 . 49 4250 - 4253 . DOI:10.1002/anie.v49:25http://doi.org/10.1002/anie.v49:25 .
Wang C, Shi W Q, Zhang W K . Nano Lett , 2002 . 2 1169 - 1172 . DOI:10.1021/nl0256917http://doi.org/10.1021/nl0256917 .
Erdmann M, David R, Fornof A, Gaub H E . Nat Nanotechnol , 2010 . 5 154 - 159 . DOI:10.1038/nnano.2009.377http://doi.org/10.1038/nnano.2009.377 .
Geisler M, Netz R R, Hugel T . Angew Chem Int Ed , 2010 . 49 4730 - 4733 . DOI:10.1002/anie.200907098http://doi.org/10.1002/anie.200907098 .
Geisler M, Xiao S B, Puchner E M, Gräter F, Hugel T . J Am Chem Soc , 2010 . 132 17277 - 17281 . DOI:10.1021/ja107212zhttp://doi.org/10.1021/ja107212z .
Zhang W K, Cui S X, Fu Y, Zhang X . J Phys Chem B , 2002 . 106 12705 - 12708 . DOI:10.1021/jp0201377http://doi.org/10.1021/jp0201377 .
Gunari N, Balazs A C, Walker G C . J Am Chem Soc , 2007 .129 10046 - 10047 . DOI:10.1021/ja068652whttp://doi.org/10.1021/ja068652w .
Li I T S, Walker G C . J Am Chem Soc , 2010 . 132 6530 - 6540 . DOI:10.1021/ja101155hhttp://doi.org/10.1021/ja101155h .
Rief M, Oesterhelt F, Heymann B, Gaub H E . Science , 1997 . 275 1295 - 1297 . DOI:10.1126/science.275.5304.1295http://doi.org/10.1126/science.275.5304.1295 .
Marszalek P E, Oberhauser A F, Pang Y P, Fernandez J M . Nature , 1998 . 396 661 - 664 . DOI:10.1038/25322http://doi.org/10.1038/25322 .
Zhang Q M, Marszalek P E . J Am Chem Soc , 2006 . 128 5596 - 5597 . DOI:10.1021/ja058828ehttp://doi.org/10.1021/ja058828e .
Trusov P V, Shveykin A I, Nechaeva E S, Volegov P S . Phys Mesomech , 2012 . 15 115 - 175.
Yanovsky Y G, Kozlov G V, Karnet Y N . Phys Mesomech , 2013 . 16 9 - 22 . DOI:10.1134/S1029959913010025http://doi.org/10.1134/S1029959913010025 .
Liu K, Song Y, Feng W, Liu N N, Zhang W K, Zhang X . J Am Chem Soc , 2011 . 133 3226 - 3229 . DOI:10.1021/ja108022hhttp://doi.org/10.1021/ja108022h .
Florin E L, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy V T, Gaub H E . Biosens Bioelectron , 1995 . 10 895 - 901 . DOI:10.1016/0956-5663(95)99227-Chttp://doi.org/10.1016/0956-5663(95)99227-C .
Butt H J, Jaschke M . Nanotechnology , 1995 . 6 1 - 7 . DOI:10.1088/0957-4484/6/1/001http://doi.org/10.1088/0957-4484/6/1/001 .
Butt H J, Franz V . Phys Rev E , 2002 . 66 031601 .
Loi S, Sun G X, Franz V, Butt H J . Phys Rev E , 2002 . 66 031602 .
Gonçalves R P, Agnus G, Sens P, Houssin C, Bartenlian B, Scheuring S . Nat Method , 2006 . 3 1007 - 1012 . DOI:10.1038/nmeth965http://doi.org/10.1038/nmeth965 .
Zheng J X, Xiong H M, Chen W Y, Lee K M, van Horn R M, Quirk R P, Lotz B, Thomas E L, Shi A C, Cheng S Z D . Macromolecules , 2006 . 39 641 - 650 . DOI:10.1021/ma052166whttp://doi.org/10.1021/ma052166w .