The preparation of LCB-PP using symmetrical multifunctional vinyl monomers as grafting monomers presents a difficulty to efficiently control side reactions
such as peroxide-initiated chain scission and branching monomer-assisted crosslinking. In this work
we synthesized two nonsymmetrical divinyl monomers
butenyl acrylate (BAC)
and 1-(but-3-enyloxy)methyl-4-vinylbenzene (BMVB) containing two carbon-carbon double bonds with different reactivity ratios. These two monomers were used in melt radical reaction of PP to prepare LCB-PP. High-temperature GPC (HT-GPC) coupled with triple detectors
1
H-NMR and rheometer were used to characterize the microstructure and melt properties of the resultant LCB-PP. The results showed that the two monomers had double function in mediating radical reaction
i.e
. stabilizing macroradicals and promoting branching reaction. Owing to a much higher reactivity ratio of the high reactive vinyl to the low reactive vinyl in the BMVB monomer
the higher reactive double-bond of BMVB preferentially reacted with macroradicals to stabilize PP macroradicals quickly
while the lower reactive double-bond later reacted with macroradicals to avoid the formation of hyper-branched or even crosslinked structure and to promote therefore the formation of long chain branched structure. Thus
compared to BAC
using BMVB as a grafting monomer led to less degradation of PP and helped to the formation of more uniformly distributed LCB structure on the PP backbone. These results demonstrate that the reactivity ratio of double-bonds in a grafting monomer to macroradicals is a key factor to control melt reaction. It is believed that further optimizing chemical structure of grafting monomer with nonsymmetrical vinyl groups
especially the reactivity ratio of double-bonds in branching monomer
will be beneficial to mediating this melt reaction.
Xing Haiping(邢海平), Wang Yujie(王宇杰), Wan Dong(万东), Zhang Zhenjiang(张振江), Jiang Zhiwei(姜治伟), Tang Tao(唐涛). Acta Polymerica Sinica(高分子学报), 2012, (11): 1200-1217
Xing H P, Wan D, Qiu J, Wang Y H, Ma L, Jiang Z W, Tang T . Polymer , 2014 . 55 ( 21 ): 5435 - 5444 . DOI:10.1016/j.polymer.2014.09.005http://doi.org/10.1016/j.polymer.2014.09.005 .
Zhou S, Hu M, Hu Y, Wang Z Z . Polym-Plast Technol , 2009 . 48 ( 2 ): 193 - 200 . DOI:10.1080/03602550802634543http://doi.org/10.1080/03602550802634543 .
Parent J, Sengupta M, Kaufman B I, Chaudhary . Polymer , 2008 . 49 ( 18 ): 3884 - 3891 . DOI:10.1016/j.polymer.2008.07.007http://doi.org/10.1016/j.polymer.2008.07.007 .
Nam G J, Yoo J H, Lee J W . J Appl Polym Sci , 2005 . 96 ( 5 ): 1793 - 1800 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Parent J S, Bodsworth A, Sengupta S S, Kontopoulou M, Chaudhary B I, Poche D, Cousteaux S . Polymer , 2009 . 50 ( 1 ): 85 - 94 . DOI:10.1016/j.polymer.2008.11.014http://doi.org/10.1016/j.polymer.2008.11.014 .
Zhang Z J, Wang D, Xing H P, Zhang Z J, Tan H Y, Wang L, Zheng J, An Y J, Tang T . Polymer , 2012 . 53 ( 1 ): 121 - 129 . DOI:10.1016/j.polymer.2011.11.033http://doi.org/10.1016/j.polymer.2011.11.033 .
Ma J, Cheng C, Sun G, Wooley K L . Macromolecules , 2008 . 41 ( 23 ): 9080 - 9089 . DOI:10.1021/ma802057uhttp://doi.org/10.1021/ma802057u .
Wang W J, Kharchenko S, Migler K, Zhu S . Polymer , 2004 . 45 ( 19 ): 6495 - 505 . DOI:10.1016/j.polymer.2004.07.035http://doi.org/10.1016/j.polymer.2004.07.035 .
Xing H P, Jiang Z W, Zhang Z J, Qiu J, Wang Y J, Ma L, Tang T . Polymer , 2012 . 53 ( 4 ): 947 - 955 . DOI:10.1016/j.polymer.2012.01.004http://doi.org/10.1016/j.polymer.2012.01.004 .
Wood-Adams P M, Dealy M, deGroot A W, Redwine O D . Macromolecules , 2000 . 33 ( 20 ): 7489 - 7499 . DOI:10.1021/ma991533zhttp://doi.org/10.1021/ma991533z .
Wang Yongbin(汪永斌), Yang Rui(杨锐), Zhang Liye(张丽叶). Chinese Plastics(中国塑料), 2006, 20(5): 67-72
Wan D, Ma L, Xing H P, Wang L, Zhang Z J, Qiu J, Zhang G C, Tang T . Polymer , 2013 . 54 ( 2 ): 639 - 651 . DOI:10.1016/j.polymer.2012.12.014http://doi.org/10.1016/j.polymer.2012.12.014 .