modest polycondensation reaction from the two macromers PEEKK-OH and PPENK-F. Hydroxy terminated PEEKK-OH macromer was obtained by solution polymerization from HQ and BFBB with sulfolane as the solvent. And the molecular weight of PEEKK-OH was successfully controlled by adjusting the monomer ratio
and the polymerized conditions were optimized by orthogonal experiments. While different molecular weight PPENK-F macromer
endcapped with ―F groups
was prepared from DHPZ
DFK and DFBN. Chemical structures and properties of these block copolymers were inverstigated by Fourier transforming infrared spectrum (FTIR)
wide X-ray diffraction (WXRD)
differantial scanning calorimetry (DSC) and thermogravimetric analyses (TGA). The FTIR spectra confirmed the formation of the block copolymers. Furthermore
WXRD measurement showed that all the block copolymers presented crystalline structure
and the crystallinity of the coplolymers decreased with increasing molecular weight of PPENK-F chain segments. All the block copolymers showed only one glass transition temperature (
T
g
)
above that of PEEKK-OH. The
T
g
of the block copolymers increased with the molecular weight of PPENK-F
due to the introduction of PPENK chain segments into the block copolymers. Moreover
for the reason of of PEEKK incorporation
all these copolymers have a same melting point (
T
m
) of about 340 °C
which would facilitate their thermal processing. Besides
all the three copolymers also exhibited remarkable thermal stability in nitrogen atmosphere with the
T
d5%
weight loss temperature ranging from 491 °C to 510 °C
and
T
d10%
from 523 °C to 530 °C
respectively. The char yields of the three copolymers at 800 °C were higher than 63%. Finally
all the copolymers showed improved solubility in selectively tested organic solvents
such as NMP and sulfolane
due to the introduction of twisted and non-coplanar DHPZ structure. Consequently
theses materials are potential candidates for the aerospace applications.
Ke Y C, Fang Z J, Wang J Z, Wu Z W . J Appl Polym Sci , 1996 . 61 ( 8 ): 1293 - 1303 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Liu T X, Mo Z S, Zhang H F, Na H, Wu Z W . Eur Polym J , 1997 . 33 ( 6 ): 913 - 918 . DOI:10.1016/S0014-3057(96)00224-8http://doi.org/10.1016/S0014-3057(96)00224-8 .
Zimmermann H J, Konnecke K. . Polymer , 1991 . 32 ( 17 ): 3162 - 3169 . DOI:10.1016/0032-3861(91)90137-8http://doi.org/10.1016/0032-3861(91)90137-8 .
Klapper M, Wehrmeister A T, Mullen K. . Macromolecules , 1996 . ( 29 ): 5805 - 5809.
Meng Y Z, Hay A S, Jian X G, Tjong S C . J Appl Polym Sci , 1998 . 68 ( 1 ): 137 - 143 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Liu Y J, Jian X G, Liu S J . J Appl Polym Sci , 2001 . 82 ( 4 ): 823 - 826 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Wang Mingjing(王明晶), Liu Cheng(刘程), Liu Zhiyong(刘志勇), Dong Liming(董黎明), Jian Xigao(蹇锡高). Acta Polymerica Sinica (高分子学报), 2007, (9): 833-837
Liao Gongxiong(廖功雄), Jian Xigao(蹇锡高), He Wei(何伟), Jin Qifeng(靳奇峰), Li Quan(李荃), Wu Lihao(吴立豪). Acta Polymerica Sinica(高分子学报), 2002, (5): 641-646
Wang G, Zhang H, Qian B, Wang J, Jian X G, Qiu J . Appl Surf Sci , 2015 . 351 169 - 174 . DOI:10.1016/j.apsusc.2015.05.124http://doi.org/10.1016/j.apsusc.2015.05.124 .
Zhang S H, Liu P, Chen Y L, Jin J Y, Hu L J, Jian X G . Chem Eng Sci , 2017 . ( 166 ): 91 - 100.
Li Y Q, Li T Y, Yan L, Zhang M Y, Zhang Z M . Mater Lett , 2016 . ( 167 ): 148 - 152.
Liu R, Wang J Y, Liu C, Li J L, Jian X G . Polym Bull , 2016 . 73 ( 7 ): 1811 - 1826 . DOI:10.1007/s00289-015-1578-yhttp://doi.org/10.1007/s00289-015-1578-y .
Zheng L, Liao G X, Gu T S, Han Y J, Jian X G . Polym Composite , 2009 . 30 ( 12 ): 1842 - 1847 . DOI:10.1002/pc.v30:12http://doi.org/10.1002/pc.v30:12 .
Wang Mingjing(王明晶), Liu Cheng(刘程), Yan Qingling(阎庆玲), Dong Liming(董黎明), Jian Xigao(蹇锡高). J Funct Mater(功能材料), 2007, (2): 243-245
Liu T X, Mo Z S, Zhang H F . Eur Polym J , 1997 . 33 ( 6 ): 913 - 918 . DOI:10.1016/S0014-3057(96)00224-8http://doi.org/10.1016/S0014-3057(96)00224-8 .