-polytetrahydrofuran (PTHF) graft copolymers with silver (Ag) nanoparticles
CS-
g
-PTHF/Ag
was successfully
in situ
prepared
via
combination of living cationic opening polymerization of tetrahydrofuran (THF) with controlled termination of living PTHF chains " grafting onto” chitosan macromolecular backbone. Chemical structure of CS-
g
-PTHF/Ag was confirmed by Fourier transform infrared spectroscopy (FTIR)
nuclear magnetic resonance (
1
H-NMR)
and X-ray photoelectron spectroscopy (XPS). The total content of Ag
drug releasing rate and micromorphology of CS-
g
-PTHF/Ag composites were characterized by ultraviolet spectroscopy (UV)
polarizing microscopy (POM)
atomic force microscopy (AFM)
scanning electron microscopy (SEM)
transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM)
respectively. The results show that the acylation degree of average functional groups in single glucosamine was 20%. The number-average molecular weight (
M
n
) and average grafting number could be designed by changing the dosage of allylBr/AgClO
4
initiating system and the molar ratio of living PTHF chains to the ―NH
2
functional groups in chitosan backbone. The
M
n
PTHF
ranged from 1400 to 2600 and average grafting number increased from 4 to 21 on the basis of every 1000 glucosamine units along the macromolecular backbone. The PTHF branches influenced the crystallinity of the acylated chitosan backbone. The microphase separation of CS-
g
-PTHF/Ag nanocomposite was observed
and the micromorphology was related to grafting density in the CS-
g
-PTHF graft copolymers. The crystallization activity of the backbone was limited with an increase in the grafting number of PTHF branches. Meanwhile
the CS-
g
-PTHF graft copolymer was found to behave pH-sensitive drug delivery. The size of the drug-loaded microspheres decreased with the increasing average grafting number in CS-
g
-PTHF graft copolymers. Drug-loading percentage of different CS-
g
-PTHF drug deliveries varied from 53% to 80%. Taking CS-
g
6
-PTHF
1.4k
as an example
its drug-releasing rate (DRR) was accelerated in weak acid of phosphate buffered solution (pH = 6.0). The drug-releasing process included three stages: in the first stage (4 h)
CS-
g
6
-PTHF
1.4k
drug delivery released fast with a DRR of 63%. In the second stage from 4 h to 8 h
DRR was slightly changed. In the third stage
drug delivery accelerated and DRR reached 100%. Drug was inhibited to release in the simulated intestinal fluid (pH = 1.2)
Souza H K S, Goncalves M D P, Gomez J . Biomacromolecules , . 2011 . 12 1015 - 1023 . DOI:10.1021/bm101356ghttp://doi.org/10.1021/bm101356g .
Majidi N S, Emtiazi G, Esfahani S S . J Med Bateriol , . 2016 . 5 ( 4 ): 9 - 14.
Ding B B, Gao H C, Song J H, Li Y Y, Zhang L N, Cao X D, Xu M, Cai J . ACS Appl Mater Interfaces , . 2016 . 8 19739 - 19746 . DOI:10.1021/acsami.6b05302http://doi.org/10.1021/acsami.6b05302 .
Ngah W S W, Teong L C, Hanafiah M A K M . Carbohydr Polym , . 2011 . 83 ( 4 ): 1446 - 1456 . DOI:10.1016/j.carbpol.2010.11.004http://doi.org/10.1016/j.carbpol.2010.11.004 .
LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S . Carbohydr Polym , . 2016 . 151 172 - 188 . DOI:10.1016/j.carbpol.2016.05.049http://doi.org/10.1016/j.carbpol.2016.05.049 .
Sun L Z, Wang Y Z, Jiang T Y, Zheng X, Zhang J H, Sun J, Sun C S, Wang S L . ACS Appl Mater Interfaces , . 2013 . 5 103 - 113 . DOI:10.1021/am302246shttp://doi.org/10.1021/am302246s .
Zong Z, Kimura Y, Takahashi M, Yamane H . Polymer , . 2000 . 41 ( 3 ): 899 - 906 . DOI:10.1016/S0032-3861(99)00270-0http://doi.org/10.1016/S0032-3861(99)00270-0 .
Liu J, Meng C G, Liu S, Kan J, Jin C H . Food Hydrocolloid , . 2017 . 63 457 - 466 . DOI:10.1016/j.foodhyd.2016.09.035http://doi.org/10.1016/j.foodhyd.2016.09.035 .
Gunbas I D, Sezer U A, İz S G, Gürhan İ D, Hasirci N . Ind Eng Chem Res , . 2012 . 51 ( 37 ): 11946 - 11954 . DOI:10.1021/ie3015523http://doi.org/10.1021/ie3015523 .
Vasquez D, Milusheva R, Baumann P, Constantin D, Chami M, Palivan C G . Langmuir , . 2014 . 30 ( 4 ): 965 - 975 . DOI:10.1021/la404558ghttp://doi.org/10.1021/la404558g .
Guo A R, Yang W X, Yang F, Yu R, Wu Y X . Macromolecules , . 2014 . 47 5450 - 5461 . DOI:10.1021/ma501060yhttp://doi.org/10.1021/ma501060y .
Theiler S, Diamantouros S E, Jockenhoevel S, Keul H, Moeller M . Polym Chem , . 2011 . 2 ( 10 ): 2273 - 2283 . DOI:10.1039/c1py00262ghttp://doi.org/10.1039/c1py00262g .
Jikei M, Aikawa Y, Matsumoto K . High Perform Polym , . 2016 . 28 ( 9 ): 1015 - 1023 . DOI:10.1177/0954008315613423http://doi.org/10.1177/0954008315613423 .
Meyer W, Engelhardt S, Novosel E, Elling B, Wegener M, Krüger H . J Funct Biomater , . 2012 . 3 ( 2 ): 257 - 268 . DOI:10.3390/jfb3020257http://doi.org/10.3390/jfb3020257 .
Pomel C, Leborgne C, Cheradame H, Scherman D, Kichler A, Guegan P . Pharm Res , . 2008 . 25 ( 12 ): 2963 - 2971 . DOI:10.1007/s11095-008-9698-9http://doi.org/10.1007/s11095-008-9698-9 .
Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach
Microstructure and Micromorphology of Poly (γ-benzyl-L-glutamate)-g-(Polytetrahydrofuran-b-Polyisobutylene) Copolymer
Crosslinking Kinetics and Application of Chitosan-Genipin Nanogel
Construction of High Performance Chitosan Based Solid State Ion Thermoelectric Battery and Thermoelectric Performance
Related Author
No data
Related Institution
State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology
College of Food Science and Technology, Nanjing Agricultural University
School of Applied Chemistry and Engineering, Univerdity of Science and Technology of China
State Kay Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, College of Materials Science and Engineering, Northeast Forestry University