浏览全部资源
扫码关注微信
1.中南大学化学化工学院 长沙 410083
2.大连理工大学精细化工国家重点实验室 大连 116012
Published:2018-5,
Received:27 October 2017,
Revised:28 November 2017,
扫 描 看 全 文
Dong-yang Chen, Cheng Liu, Jin-yan Wang, Chun-yue Pan, Gui-peng Yu, Xi-gao Jian. Research Progress on the Electrochemical Application of Nanoporous Organic Polymers. [J]. Acta Polymerica Sinica 0(5):559-570(2018)
Dong-yang Chen, Cheng Liu, Jin-yan Wang, Chun-yue Pan, Gui-peng Yu, Xi-gao Jian. Research Progress on the Electrochemical Application of Nanoporous Organic Polymers. [J]. Acta Polymerica Sinica 0(5):559-570(2018) DOI: 10.11777/j.issn1000-3304.2017.17298.
纳米多孔有机聚合物(nanoporous organic polymers
NOPs)是一类由轻元素组成的新型高分子材料,具有比表面积大、孔容高、化学和物理性质稳定等优点,在电化学领域表现出巨大的应用潜力. 其合成方法多样,孔结构可控,表面易修饰更推进了NOPs在电化学应用的快速发展. 本文总结了NOPs在电化学应用的研究进展,重点介绍NOPs的骨架改性和孔结构调控对电化学性能的影响,分析其分子结构和聚集态结构与性能的构效关系,展望了其在电化学领域未来的发展趋势.
As new emerged polymer materials
nanoporous organic polymers (NOPs)
derived completely from light elements
are featured by high surface areas
low skeleton densities
and good chemical and thermal stabilities
which have led to numerous potential applications in heterogeneous catalysis
gas storage
and separation. Furthermore
their versatile synthetic methodology
controllable pore structure and easy modification significantly accelerate their development. Recently
the applications of NOPs targeted for organic electronic devices and solid state sensors have drawn increasing attention. The study of NOP-based electrochemical sensor technologies has become a very active and robust research area
and is expected to provide high-performance technologies for electrode materials
electrocatalytic carrier
and electrochemical detection
etc
. One potential advantage of these materials is derived from their porous robust frameworks with high accessible surface areas
which enable structural preservation and efficient metal uptake and diffusion. However
the weak electron transport and wettability of NOPs somewhat limit their practical application in electrochemistry. In response
novel strategies have been developed to enhance their conductivity and wettability
including the incorporation of heteroatoms
extending of the skeleton conjugation
and the introduction of metal sites into the porous networks. Especially
the introduction of heteroatoms into the electrode materials is the mostly utilized technology
because it not only enables the increase in conductivity
wettablity and electroactive surface area of the electrodes
but also endows the electrodes with high pseudocapacitance. Furthermore
pore-size engineering
i.e.
enhancing microporosity and constructing hierarchical structure
is crucial to improve the electrochemical performance. Hierarchically porous materials used as electrode matrices appear to be much more favorable for mass loading and ion diffusion or transport
endowing them with technological importance for applications in energy storage and sensor applications. This study summarizes recent research progress of NOPs in electrochemical applications
focuses on rational design
pore engineering and the structure-electrochemical property relationship
and also prospects their future development.
纳米多孔有机聚合物电极材料电催化电化学性能
Nanoporous organic polymersElectrode materialsElectrocatalysisElectrochemical properties
Cote A P, Benin A I, Ockwig N W, O’Keeffe M , Matzger A J, Yaghi O M .Science , 2005 . 310 ( 5751 ): 1166 - 1170 . DOI:10.1126/science.1120411http://doi.org/10.1126/science.1120411 .
Budd P M, Ghanem B S, Makhseed S, Mckeown N B, Msayib K J, Tattershall C E . Chem Commun , 2004 . 2 ( 2 ): 230 - 231.
Davankov V A, Tsyurupa M P . React Polym , 1990 . 13 ( 1-2 ): 27 - 42 . DOI:10.1016/0923-1137(90)90038-6http://doi.org/10.1016/0923-1137(90)90038-6 .
Jiang J X, Su F, Trewin A, Wood C D, Campbell N L, Niu H . Angew Chem , 2008 . 47 ( 7 ): 8574 - 8578.
Xie Y, Wang T T, Liu X H, Zou K, Deng W Q . Nat Commun , 2013 . 4 ( 3 ): 1960 .
Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen J C, Bernardo P, Bazzarelli F, McKeown N B . Science , 2013 . 339 ( 6117 ): 303 - 307 . DOI:10.1126/science.1228032http://doi.org/10.1126/science.1228032 .
Lu W G, Sculley J P, Yuan D Q, Krishna R, Zhou H C . J Phys Chem C , 2013 . 117 ( 8 ): 4057 DOI:10.1021/jp311512qhttp://doi.org/10.1021/jp311512q .
Ghanem B S, Swaidan R, Eric L, Pinnau I . Adv Mater , 2014 . 26 ( 22 ): 3688 - 3692 . DOI:10.1002/adma.v26.22http://doi.org/10.1002/adma.v26.22 .
Yoon S M, Srirambalaji R, Kim K . Chem Rev , 2012 . 112 ( 2 ): 1196 - 1231 . DOI:10.1021/cr2003147http://doi.org/10.1021/cr2003147 .
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J . Science , 2015 . 349 ( 6253 ): 1208 - 1213 . DOI:10.1126/science.aac8343http://doi.org/10.1126/science.aac8343 .
Xu Y, Jiang D L . Chem Commun , 2014 . 50 ( 21 ): 2781 - 2783 . DOI:10.1039/c3cc49669dhttp://doi.org/10.1039/c3cc49669d .
Guo J, Xu Y H, Jin S B, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D L . Nat Commun , 2013 . 4 ( 3776 ): 2736 - 2744.
Li P F, Schon T B, Seferos D S . Angew Chem Int Ed , 2015 . 54 ( 32 ): 9361 - 9366 . DOI:10.1002/anie.201503418http://doi.org/10.1002/anie.201503418 .
Liu X, Xu Y, Jiang D . J Am Chem Soc , 2012 . 134 ( 25 ): 8738 - 8741.
Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Thomas H, Sandeep V, Banerjee R . Chem Sci , 2015 . 6 ( 7 ): 3931 - 3939 . DOI:10.1039/C5SC00512Dhttp://doi.org/10.1039/C5SC00512D .
Zhao J, Lai H W, Lyu Z Y, Jiang Y F, Xie K, Wang X Z, Wu Q, Yang L J, Jin Z, Ma Y W, Liu J, Hu Z . Adv Mater , 2015 . 27 ( 23 ): 3541 - 3545 . DOI:10.1002/adma.v27.23http://doi.org/10.1002/adma.v27.23 .
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhao J W, Feng X, Wang B . J Am Chem Soc , 2017 . 139 ( 12 ): 4258 - 4262 . DOI:10.1021/jacs.7b02648http://doi.org/10.1021/jacs.7b02648 .
Lee J S M, Wu T H, Alston B M, Briggs M E, Hasell T, Hu C C, Cooper A I . J Mater Chem A , 2016 . 4 ( 20 ): 7665 - 7673 . DOI:10.1039/C6TA02319Chttp://doi.org/10.1039/C6TA02319C .
Chandra S, Chowdhury D R, Addicoat M, Heine T, Paul A, Banerjee R . Chem Mater , 2017 . 29 ( 5 ): 2074 - 2080 . DOI:10.1021/acs.chemmater.6b04178http://doi.org/10.1021/acs.chemmater.6b04178 .
Xu F, Chen X, Tang Z W, Wu D C, Fu R W, Jiang D L . Chem Commun , 2014 . 50 ( 37 ): 4788 - 4790 . DOI:10.1039/C4CC01002Ghttp://doi.org/10.1039/C4CC01002G .
Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L . Sci Rep , 2015 . 5 8225 - 8230 . DOI:10.1038/srep08225http://doi.org/10.1038/srep08225 .
Yang D H, Yao Z Q, Wu D H, Zhang Y H, Zhou Z, Bu X H . J Mater Chem A , 2016 . 4 ( 47 ): 18621 - 18627 . DOI:10.1039/C6TA07606Hhttp://doi.org/10.1039/C6TA07606H .
Yang X F, Dong B, Zhang H Z, Ge R, Gao Y A, Zhang H M . RSC Adv , 2015 . 5 ( 105 ): 86137 - 86143 . DOI:10.1039/C5RA16235Ahttp://doi.org/10.1039/C5RA16235A .
Ghazi Z A, Zhu L Y, Wang H, Naeem A, Khattak A M, Liang B, Khan N A, Wei Z X, Li L S, Tang Z Y . Adv Energy Mater , 2016 . 6 ( 24 ): 1601250 DOI:10.1002/aenm.201601250http://doi.org/10.1002/aenm.201601250 .
Zheng J, Tian J, Wu D, Gu M, Xu W, Wang C, Gao F, Zhang J G, Liu J, Xiao J . Nano Lett , 2014 . 14 ( 5 ): 2345 - 2352 . DOI:10.1021/nl404721hhttp://doi.org/10.1021/nl404721h .
Fang Y, Lv Y Y, Che R C, Wu H Y, Zhang X H, Gu D, Zheng G F, Zhao D Y . J Am Chem Soc , 2013 . 135 ( 4 ): 1524 - 1530 . DOI:10.1021/ja310849chttp://doi.org/10.1021/ja310849c .
Shrma V, Khilari S, Pradhan D, Mohanty P . RSC Adv , 2016 . 6 ( 61 ): 56421 - 56428 . DOI:10.1039/C6RA06252Khttp://doi.org/10.1039/C6RA06252K .
Hu F Y, Wang J Y, Hu S, Li L F, Wang G, Qiu J S, Jian X G . Nanoscale , 2016 . 8 ( 36 ): 16323 - 16331 . DOI:10.1039/C6NR05146Dhttp://doi.org/10.1039/C6NR05146D .
Lu G L, Zhu Y L, Xu K L, Jin Y H, Ren Z J, Liu Z N, Zhang W . Nanoscale , 2015 . 7 ( 43 ): 18271 - 18277 . DOI:10.1039/C5NR05324Bhttp://doi.org/10.1039/C5NR05324B .
Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir S M, Banerjee R . J Am Chem Soc , 2014 . 136 ( 18 ): 6570 - 6573 . DOI:10.1021/ja502212vhttp://doi.org/10.1021/ja502212v .
Mullangi D, Dhavale V, Shalini S, Nandi shyamapada, Collins S, Woo T, Kurungot S, Vaidhyanathan R . Adv Energy Mater , 2016 . 6 ( 13 ): 1600110 DOI:10.1002/aenm.201600110http://doi.org/10.1002/aenm.201600110 .
Nandi S, Singh S K, Mullangi D, Illathvalappil R, George L, Vinod C P, Kurungot S, Vaidhyanathan R . Adv Energy Mater , 2016 . 6 ( 24 ): 1601189 DOI:10.1002/aenm.201601189http://doi.org/10.1002/aenm.201601189 .
Palma-Cando A, Scherf U . ACS Appl Mater Interfaces , 2015 . 7 ( 21 ): 11127 - 11133 . DOI:10.1021/acsami.5b02233http://doi.org/10.1021/acsami.5b02233 .
Zhuang X D, Gehrig D, Forler N, Liang H W, Wagner M, Hansen M R, Laquai F, Zhang F, Feng X L . Adv Mater , 2015 . 27 ( 25 ): 3789 - 3796 . DOI:10.1002/adma.v27.25http://doi.org/10.1002/adma.v27.25 .
Deblase C R, Silberstein E S, Truong T T, Abruna H D, Dichtel W R . J Am Chem Soc , 2013 . 135 ( 34 ): 16821 - 16824.
Khattak A M, Ghazi Z A, Liang B, Khan N A, Iqbal A, Li L, Tang Z Y . J Mater Chem A , 2016 . 4 ( 42 ): 16312 - 16317 . DOI:10.1039/C6TA05784Ehttp://doi.org/10.1039/C6TA05784E .
Zhuang X D, Zhang F, Wu D Q, Feng X L . Adv Mater , 2014 . 26 ( 19 ): 3081 - 3086 . DOI:10.1002/adma.201305040http://doi.org/10.1002/adma.201305040 .
Hao L, Ning J, Luo B, Wang B, Zhang Y B, Tang Z H, Yang J H, Thomas A, Zhi L J . J Am Chem Soc , 2015 . 137 ( 1 ): 219 - 225 . DOI:10.1021/ja508693yhttp://doi.org/10.1021/ja508693y .
Mulzer C R, Shen L, Bisbey R P, McKone J R, Zhang N, Abruna H D, Dichtel W R . ACS Cent Sci , 2016 . 2 ( 9 ): 667 - 673 . DOI:10.1021/acscentsci.6b00220http://doi.org/10.1021/acscentsci.6b00220 .
Bui M . Analyst , 2012 . 137 ( 8 ): 1888 - 1894 . DOI:10.1039/c2an16020jhttp://doi.org/10.1039/c2an16020j .
Dong Y P, Zhou Y, Ding Y, Chu X F, Wang C M . Anal Methods , 2014 . 6 ( 23 ): 9367 - 9374 . DOI:10.1039/C4AY01908Chttp://doi.org/10.1039/C4AY01908C .
Li A, Lu R F, Wang Y, Wang X, Han K L, Deng W Q . Angew Chem Int Ed , 2010 . 49 ( 19 ): 3330 - 3333 . DOI:10.1002/anie.200906936http://doi.org/10.1002/anie.200906936 .
Xu F, Hong X, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L . Angew Chem Int Ed , 2015 . 54 ( 23 ): 6814 - 6818 . DOI:10.1002/anie.201501706http://doi.org/10.1002/anie.201501706 .
Fu X, Zhang Y D, Gu S, Zhu Y L, Yu G P, Pan C Y, Wang Z G, Hu Y H . Chem Eur J , 2015 . 21 ( 38 ): 13357 - 13363 . DOI:10.1002/chem.v21.38http://doi.org/10.1002/chem.v21.38 .
Chen D Y, Gu S, Fu Y, Zhu Y L, Liu C, Li G H, Yu G P, Pan C Y . Polym Chem , 2016 . 7 ( 20 ): 3416 - 3422 . DOI:10.1039/C6PY00278Ahttp://doi.org/10.1039/C6PY00278A .
Zhao W X, Hou Z S, Yao Z Q, Zhuang X D, Zhang F, Feng X L . Polym Chem , 2015 . 6 ( 40 ): 7171 - 7178 . DOI:10.1039/C5PY01194Ahttp://doi.org/10.1039/C5PY01194A .
Wang P Y, Wu Q, Han L F, Wang S, Fang S M, Zhang Z H, Sun S M . RSC Adv , 2015 . 5 ( 35 ): 27290 - 27294 . DOI:10.1039/C5RA02251Ghttp://doi.org/10.1039/C5RA02251G .
Roberts A D, Li X, Zhang H F . Chem Soc Rev , 2014 . 43 ( 13 ): 4341 - 4356 . DOI:10.1039/C4CS00071Dhttp://doi.org/10.1039/C4CS00071D .
Li Z H, Wu D C, Huang X, Ma J H, Liu H, Liang Y R, Fu R W, Matyjaszewski K . Energy Environ Sci , 2014 . 7 ( 9 ): 3006 - 3012 . DOI:10.1039/C4EE00941Jhttp://doi.org/10.1039/C4EE00941J .
Yang X W, Zhuang X D, Huang Y J, Jiang J Z, Tian H, Wu D Q, Zhang F, Mai Y Y, Feng X L . Polym Chem , 2015 . 6 ( 7 ): 1088 - 1095 . DOI:10.1039/C4PY01408Ahttp://doi.org/10.1039/C4PY01408A .
Li Y Q, Roy S, Ben T, Xu S X, Qiu S L . Phys Chem Chem Phys , 2014 . 16 ( 25 ): 12909 - 12917 . DOI:10.1039/c4cp00550chttp://doi.org/10.1039/c4cp00550c .
Eliad L Salitra G, Soffer A, Aurbach D . J Phys Chem B , 2001 . 105 ( 29 ): 6880 - 6887 . DOI:10.1021/jp010086yhttp://doi.org/10.1021/jp010086y .
Eliad L, Salitra G, Soffer A, Aurbach D . J Phys Chem B , 2002 . 106 ( 39 ): 10128 - 10134 . DOI:10.1021/jp020336qhttp://doi.org/10.1021/jp020336q .
0
Views
23
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution