浏览全部资源
扫码关注微信
高分子材料应用技术湖南省重点实验室 湘潭大学化学学院 湘潭 411105
Published:20 January 2018,
Received:14 June 2017,
Revised:24 July 2017,
扫 描 看 全 文
Xiao Jiang, Li Min-jie, Tang Hao-yu. Synthesis and Thermoresponsive Properties of Polypeptides Bearing Phosphonium Pendants. [J]. Acta Polymerica Sinica (1):56-62(2018)
Xiao Jiang, Li Min-jie, Tang Hao-yu. Synthesis and Thermoresponsive Properties of Polypeptides Bearing Phosphonium Pendants. [J]. Acta Polymerica Sinica (1):56-62(2018) DOI: 10.11777/j.issn1000-3304.2018.17154.
通过亲核取代反应合成了一系列含鏻和氯反离子的聚多肽(P1-Cl~P5-Cl).利用核磁共振氢谱和傅里叶变换红外光谱验证了聚合物的分子结构.在核磁共振氢谱图中,通过特征氢峰的积分面积计算了三丁基鏻和三苯基鏻侧基的含量和接枝度.通过离子交换反应合成了一系列含鏻和碘或氟硼酸根反离子的聚多肽(P1-I~P5-I和P1-BF
4
~P5-BF
4
).三丁基鏻含量为
x
=0.89的P2-I和P2-BF
4
样品在水溶液中具有可逆的高临界溶解温度(UCST)类型的温敏性质.变温紫外-可见光谱的结果表明,UCST类型的相转变温度(
T
pt
)具有显著的聚合物浓度、盐浓度和种类的依赖性.
T
pt
随聚合物浓度、碘化钠或氟硼酸钠浓度的增加而升高,随氯化钠浓度的增加而降低.
A series of polypeptides bearing phosphonium pendants and chloride counter anions (P1-Cl -P5-Cl) were synthesized by nucleophilic substitution between poly(
γ
-3-chloropropyl-L-glutamate) (PCPLG) and tributyl phosphine and/or triphenyl phosphine. Their molecular structures were verified by
1
H nuclear magnetic resonance (
1
H-NMR)and Fourier transform infrared (FTIR). From
1
H-NMR spectra
the molar content and grafting efficiency of tributyl phosphonium and/or triphenyl phosphonium moieties were calculated by integration of the characteristic proton peaks. All resulting polypeptides showed high grafting efficiency (≥ 87%). Polypeptides bearing phosphonium pendants and iodide (P1-I -P5-I) or tetrafluoroborate counter anions (P1-BF
4
-P5-BF
4
) were synthesized by ion exchange. All polypeptides with chloride counter-anions were readily soluble in water. Nevertheless
P1-X (X = I
BF
4
) with exclusive tributyl phosphonium and P5-X (X = I
BF
4
) with exclusive triphenyl phosphonium showed poor solubility in water. It is interesting to observe that P2-I and P2-BF
4
samples with appropriate molar content of tributyl phosphonium moieties (
x
= 0.89) showed reversible thermo-responsiveness of UCST (upper critical solution temperature). This phenomenon suggested that co-grafting or copolymerization of the two non-thermoresponsive ionic liquid moieties led to UCST type thermoresponsivenes. To the best of our knowledge
this is the first example of thermoresponsive polypeptides bearing phosphonium pendants. Variable temperature UV-Vis spectroscopy was used to study the UCST type solution phase transition behaviors of P2-I and P2-BF
4
. In a cooling/heating cycle
UV-Vis spectra revealed good reversibility of the UCST type phase transitions. Yet
a noticeable hysteresis was also observed. The UCST type phase transition temperature (
T
pt
) was also determined by UV-Vis spectroscopy at different temperatures. In DI water
the values of
T
pt
of P2-I and P2-BF
4
were in the temperature range of 11.5 -60.2 ℃ and 45.5 -71.0 ℃
respectively
and highly dependent on counter anions
polymer concentration
nature of salts and salt concentration. Under the same experimental condition
P2-BF
4
with more hydrophobic tetrafluoroborate counter anions showed higher
T
pt
than P2-I with iodide counter anions. Furthermore
T
pt
increased with increased polymer concentration
sodium iodide or sodium tetrafluoroborate concentration. Yet
it decreased with increased sodium chloride concentration.
聚多肽(聚氨基酸)离子聚合物高临界溶解温度温敏性质
Polypeptide (poly(amino acid))Ionic polymerUCSTThemoresponsiveness
V Aseyev , H Tenhu , F Winnik . . Adv Polym Sci , 2011 . 242 29 - 89 . http://www.springerlink.com/content/fulltext.pdf?id=doi:10.1007/12_2010_57.
M A C Stuart , W T S Huck , J Genzer , M Muller , C Ober , M Stamm , G B Sukhorukov , I Szleifer , V V Tsukruk , M Urban , F Winnik , S Zauscher , I Luzinov , S Minko . . Nat Mater , 2010 . 9 101 - 113 . DOI:10.1038/nmat2614http://doi.org/10.1038/nmat2614.
A Halperin , M Kröger , F M Winnik . . Angew Chem Int Ed , 2015 . 54 15342 - 15367 . DOI:10.1002/anie.201506663http://doi.org/10.1002/anie.201506663.
Q Zhang , R Hoogenboom . . Prog Polym Sci , 2015 . 48 122 - 142 . DOI:10.1016/j.progpolymsci.2015.02.003http://doi.org/10.1016/j.progpolymsci.2015.02.003.
J Seuring , S Agarwal . . Macromol Rapid Commun , 2012 . 33 1898 - 1920 . DOI:10.1002/marc.v33.22http://doi.org/10.1002/marc.v33.22.
J Niskanen , H Tenhu . . Polym Chem , 2017 . 8 220 - 232 . DOI:10.1039/C6PY01612Jhttp://doi.org/10.1039/C6PY01612J.
Y Kohno , S Saita , Y Men , J Yuan , H Ohno . . Polym Chem , 2015 . 6 2163 - 2178 . DOI:10.1039/C4PY01665Chttp://doi.org/10.1039/C4PY01665C.
T J Deming . . Chem Rev , 2016 . 116 786 - 808 . DOI:10.1021/acs.chemrev.5b00292http://doi.org/10.1021/acs.chemrev.5b00292.
Youhua Tao . . Acta Polymerica Sinica , 2016 . ( 9 ): 1151 - 1159 . http://www.gfzxb.org/CN/abstract/abstract14649.shtml.
陶 友华 . . 高分子学报 , 2016 . ( 9 ): 1151 - 1159 . http://www.gfzxb.org/CN/abstract/abstract14649.shtml.
C He , X Zhuang , Z Tang , H Tian , X Chen . . Adv Healthcare Mater , 2012 . 1 48 - 78 . DOI:10.1002/adhm.201100008http://doi.org/10.1002/adhm.201100008.
C Deng , J Wu , R Cheng , F Meng , H A Klok , Z Zhong . . Prog Polym Sci , 2014 . 39 330 - 364 . DOI:10.1016/j.progpolymsci.2013.10.008http://doi.org/10.1016/j.progpolymsci.2013.10.008.
H Lu , J Wang , Z Song , L Yin , Y Zhang , H Tang , C Tu , Y Lin , J Cheng . . Chem Commun , 2014 . 50 139 - 155 . DOI:10.1039/C3CC46317Fhttp://doi.org/10.1039/C3CC46317F.
Y Shen , X Fu , W Fu , Z Li . . Chem Soc Rev , 2015 . 44 612 - 622 . DOI:10.1039/C4CS00271Ghttp://doi.org/10.1039/C4CS00271G.
R Hoogenboom , H Schlaad . . Polym Chem , 2017 . 8 24 - 40 . DOI:10.1039/C6PY01320Ahttp://doi.org/10.1039/C6PY01320A.
Y Deng , Y Xu , X Wang , Q Yuan , Y Ling , H Tang . . Macromol Rapid Commun , 2015 . 36 453 - 458 . DOI:10.1002/marc.v36.5http://doi.org/10.1002/marc.v36.5.
M Zhu , Y Wu , C Ge , Y Ling , H Tang . . Macromolecules , 2016 . 49 3542 - 3549 . DOI:10.1021/acs.macromol.6b00116http://doi.org/10.1021/acs.macromol.6b00116.
C Ge , S Liu , C Liang , Y Ling , H Tang . . Polym Chem , 2016 . 7 5978 - 5987 . DOI:10.1039/C6PY01287Fhttp://doi.org/10.1039/C6PY01287F.
J Xiao , M Li , W Liu , Y Li , Y Ling , H Tang . . Eur Polym J , 2017 . 88 340 - 348 . http://www.sciencedirect.com/science/article/pii/S0014305716314823.
C Ge , L Zhao , Y Ling , H Tang . . Polym Chem , 2017 . 8 1895 - 1905 . DOI:10.1039/C7PY00170Chttp://doi.org/10.1039/C7PY00170C.
C Ornelas-Megiatto , P R Wich , J M J Fréchet . . J Am Chem Soc , 2012 . 134 1902 - 1905 . DOI:10.1021/ja207366khttp://doi.org/10.1021/ja207366k.
Z Song , N Zheng , X Ba , L Yin , R Zhang , L Ma , J Cheng . . Biomacromolecules , 2014 . 15 1491 - 1497 . DOI:10.1021/bm5001026http://doi.org/10.1021/bm5001026.
Y Men , H Schlaad , J Yuan . . ACS Macro Lett , 2013 . 2 456 - 459 . DOI:10.1021/mz400155rhttp://doi.org/10.1021/mz400155r.
A Okafuji , Y Kohno , H Ohno . . Macromol Rapid Commun , 2016 . 37 1130 - 1134 . DOI:10.1002/marc.v37.14http://doi.org/10.1002/marc.v37.14.
Y Biswas , T Maji , M Dule , T K Mandal . . Polym Chem , 2016 . 7 867 - 877 . DOI:10.1039/C5PY01574Jhttp://doi.org/10.1039/C5PY01574J.
Q Hu , Y Deng , Q Yuan , Y Ling , H Tang . . J Polym Sci, Part A:Polym Chem , 2014 . 52 149 - 153 . DOI:10.1002/pola.v52.2http://doi.org/10.1002/pola.v52.2.
Y Zhang , S Furyk , D E Bergbreiter , P S Cremer . . J Am Chem Soc , 2005 . 127 14505 - 14510 . DOI:10.1021/ja0546424http://doi.org/10.1021/ja0546424.
0
Views
15
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution