浏览全部资源
扫码关注微信
上海交通大学化学化工学院 上海 200240
Published:20 January 2018,
Received:16 June 2017,
Revised:17 July 2017,
扫 描 看 全 文
Li Pan, Dong Chang-ming. Synthesis of Hyperbranched Polylysine Based on Acid-base Dynamic Chemistry. [J]. Acta Polymerica Sinica (1):63-71(2018)
Li Pan, Dong Chang-ming. Synthesis of Hyperbranched Polylysine Based on Acid-base Dynamic Chemistry. [J]. Acta Polymerica Sinica (1):63-71(2018) DOI: 10.11777/j.issn1000-3304.2018.17160.
报道了离子型单体
ε
-四氟硼酸盐-L-赖氨酸-
N
-羧酸酐(NH
3
BF
4
-Lys NCA)的合成,其化学结构和纯度采用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(
1
H-NMR)、碳谱(
13
C-NMR)、氟谱(
19
F-NMR)和飞行时间质谱(TOF-MS)进行了确认.在大于20 ℃时,单体中的胺基氟硼酸盐动态解离出
ε
-胺基,原位转化为AB*型引发单体(inimer-NCA),一锅法生成了超支化聚赖氨酸氟硼酸盐.产物经脱盐处理,得到了支化度为0.34 ~ 0.53的超支化聚赖氨酸.在25 ~ 55 ℃聚合温度内,离子单体的开环聚合符合一级动力学,表观速率常数
k
p
obs
从25 ℃的0.01 h
-1
逐渐增大到55 ℃的0.11 h
-1
.采用异核单量子相干谱(
1
H-
13
C HSQC)、傅里叶变换离子回旋共振质谱(FTICR-MS)和FTIR对超支化聚合物的结构和聚合机理进行了解析.
Novel
N
ε
-(tetrafluoroboran ammonium)-L-lysine-
N
-carboxyanhydride (NH
3
BF
4
-Lys NCA) was synthesized for the first time and fully characterized by Fourier transform infrared spectroscopy (FTIR)
nuclear magnetic resonance spectroscopy(
1
H-NMR
13
C-NMR
19
F-NMR) and time of flight mass spectroscopy (TOF-MS). When the polymerization was conducted at 20 ℃
the deactivated NH
3
BF
4
-Lys NCA does not change within 110 h
implying no polymerization occurred. However
the ionic monomer at 25 ℃ dynamically dissociates and is transformed into an activated AB* inimer type of NCA containing a primary
ε
-amine (
i
.
e
.
inimer-NCA)
which then triggers ring-opening polymerization (ROP) to produce hyperbranched polylysines salts in one-pot. The ROP of NH
3
BF
4
-Lys NCA at 25 ℃ to 55 ℃ in DMF solution conforms to first-order kinetics and the observed kinetic rate constant increases from 0.01 h
-1
to 0.11 h
-1
due to the enhanced dissociation kinetics of tetrafluoroboran ammonium. The resulting hyperbranched polylsines salts mainly exhibits a
β
-turn secondary conformation (about 70%) in solid state
as characterized by FTIR. With the polymerization temperature increased from 25 ℃ to 55 ℃
the degree of branching of the hyperbranched polylysines apparently decreases from 0.53 to 0.34
while the molar percentage of cyclic dimer units increases conversely from 6.4% to 11.5%. During the polymerization process
monomers
dimers and the resulting oligomers concomitantly dissociate to generate primary
ε
-amine
leading to an increasing initiator concentration coupled with a decreasing monomer concentration. By consequence
the molecular weight of the hyperbranched polymers cannot be adjusted by changing the polymerization temperature and the monomer concentration. However
the degree of branching and the molar percentage of cyclic dimer units within the hyperbranched polymers can be tuned to some extent by adjusting the polymerization temperature. Finally
both Fourier transform ion cyclotron resonance mass spectroscopy (FTICR-MS) and heteronuclear single quantum coherence spectroscopy (
1
H-
13
C HSQC) confirms that a cyclic dimer is mainly formed from the two NH
3
BF
4
-Lys NCA monomers at initial stage
which further initiates ROP to produce the hyperbranched polymers according to the well-known normal amine mechanism. Meanwhile
a little amount of NH
3
BF
4
-Lys NCA directly polymerizes itself to generate the hyperbranched polymers without forming a cyclic dimer center.
超支化聚赖氨酸离子型NCA引发单体二级结构
Hyperbranched polypeptideIonic NCAInimerSecondary structure
Mingzhi Wang , Jianzhong Du . . Acta Polymerica Sinica , 2014 . ( 9 ): 1183 - 1194 . http://www.gfzxb.org/CN/abstract/abstract14203.shtml.
王 明智 , 杜 建忠 . . 高分子学报 , 2014 . ( 9 ): 1183 - 1194 . http://www.gfzxb.org/CN/abstract/abstract14203.shtml.
Youhua Tao . . Acta Polymerica Sinica , 2016 . ( 9 ): 1151 - 1159 . http://www.gfzxb.org/CN/abstract/abstract14649.shtml.
陶 友华 . . 高分子学报 , 2016 . ( 9 ): 1151 - 1159 . http://www.gfzxb.org/CN/abstract/abstract14649.shtml.
H Lu , J Wang , Z Y Song , L C Yin , Y F Zhang , H Y Tang , C L Tu , Y Lin , J J Cheng . . Chem Commun , 2014 . 50 ( 2 ): 139 - 155 . DOI:10.1039/C3CC46317Fhttp://doi.org/10.1039/C3CC46317F.
T J Deming . . Chem Soc Rev , 2015 . 116 ( 3 ): 786 - 808.
C D Vacogne , H Schlaad . . Chem Commun , 2015 . 51 ( 86 ): 15645 - 15648 . DOI:10.1039/C5CC06905Jhttp://doi.org/10.1039/C5CC06905J.
W Zhao , Y Gnanou , N Hadjichristidis . . Chem Commun , 2015 . 51 ( 17 ): 3663 - 3666 . DOI:10.1039/C4CC09055Ahttp://doi.org/10.1039/C4CC09055A.
I Dimitrov , H Schlaad . . Chem Commun , 2003 . 23 2944 - 2945 . http://www.ncbi.nlm.nih.gov/pubmed/14680253.
I Conejos-Sánchez , A Duro-Castano , A Birke , M Barz , M J Vicent . . Polym Chem , 2013 . 4 ( 11 ): 3182 - 3186 . DOI:10.1039/c3py00347ghttp://doi.org/10.1039/c3py00347g.
J R Kramer , T J Deming . . Biomacromolecules , 2010 . 11 ( 12 ): 3668 - 3672 . DOI:10.1021/bm101123khttp://doi.org/10.1021/bm101123k.
G J Habraken , M Peeters , C H Dietz , C E Koning , A Heise . . Polym Chem , 2010 . 1 ( 4 ): 514 - 524 . DOI:10.1039/b9py00337ahttp://doi.org/10.1039/b9py00337a.
D L Pickel , N Politakos , A Avgeropoulos , J M Messman . . Macromolecules , 2009 . 42 ( 20 ): 7781 - 7788 . DOI:10.1021/ma901340yhttp://doi.org/10.1021/ma901340y.
D L Wang , Y Jin , X Y Zhu , D Y Yan . . Prog Polym Sci , 2017 . 64 114 - 153 . DOI:10.1016/j.progpolymsci.2016.09.005http://doi.org/10.1016/j.progpolymsci.2016.09.005.
D L Wang , T Y Zhao , X Y Zhu , D Y Yan , W X Wang . . Chem Soc Rev , 2015 . 44 ( 12 ): 4023 - 4071 . DOI:10.1039/C4CS00229Fhttp://doi.org/10.1039/C4CS00229F.
Y Huang , D L Wang , X Y Zhu , D Y Yan , R J Chen . . Polym Chem , 2015 . 6 ( 15 ): 2794 - 2812 . DOI:10.1039/C5PY00144Ghttp://doi.org/10.1039/C5PY00144G.
J Rodríguez-Hernández , M Gatti , H A Klok . . Biomacromolecules , 2003 . 4 ( 2 ): 249 - 258 . DOI:10.1021/bm020096khttp://doi.org/10.1021/bm020096k.
H A Klok , J Rodríguez-Hernández . . Macromolecules , 2002 . 35 ( 23 ): 8718 - 8723 . DOI:10.1021/ma020857bhttp://doi.org/10.1021/ma020857b.
X Chang , C M Dong . . Biomacromolecules , 2013 . 14 ( 9 ): 3329 - 3337 . DOI:10.1021/bm400951mhttp://doi.org/10.1021/bm400951m.
P Li , C M Dong . . ACS Macro Lett , 2017 . 6 ( 3 ): 292 - 297 . DOI:10.1021/acsmacrolett.7b00167http://doi.org/10.1021/acsmacrolett.7b00167.
C D Vacogne , H Schlaad . . Chem Commun , 2015 . 51 ( 86 ): 15645 - 15648 . DOI:10.1039/C5CC06905Jhttp://doi.org/10.1039/C5CC06905J.
W Zhao , Y Gnanou , N Hadjichristidis . . Chem Commun , 2015 . 51 ( 17 ): 3663 - 3666 . DOI:10.1039/C4CC09055Ahttp://doi.org/10.1039/C4CC09055A.
H R Kricheldorf , C V Lossow , G Schwarz . . Macromolecules , 2005 . 38 ( 13 ): 5513 - 5518 . DOI:10.1021/ma0401368http://doi.org/10.1021/ma0401368.
W Y Wang , L Chen . . J Appl Polym Sci , 2007 . 104 ( 3 ): 1482 - 1486 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
W X Wang , Y Zheng , E Roberts , C J Duxbury , L F Ding , D J Irvine , S M Howdle . . Macromolecules , 2007 . 40 ( 20 ): 7184 - 7194 . DOI:10.1021/ma0707133http://doi.org/10.1021/ma0707133.
P G Parzuchowski , M Grabowska , M Tryznowski , G Rokicki . . Macromolecules , 2006 . 39 ( 21 ): 7181 - 7186 . DOI:10.1021/ma061488chttp://doi.org/10.1021/ma061488c.
J Zou , J W Fan , X He , S Y Zhang , H Wang , K L Wooley . . Macromolecules , 2013 . 46 ( 10 ): 4223 - 4226 . DOI:10.1021/ma4007939http://doi.org/10.1021/ma4007939.
M Scholl , T Q Nguyen , B Bruchmann , H A Klok . . J Polym Sci, Part A:Polym Chem , 2007 . 45 ( 23 ): 5494 - 5508 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
M Zelzer , A Heise . . Polym Chem , 2013 . 4 ( 13 ): 3896 - 3904 . DOI:10.1039/c3py00431ghttp://doi.org/10.1039/c3py00431g.
J W Fan , J Zou , X He , F W Zhang , J E Raymond , K L Wooley . . Chem Sci , 2014 . 5 ( 1 ): 141 - 150 . DOI:10.1039/C3SC52504Jhttp://doi.org/10.1039/C3SC52504J.
V K Kotharangannagari , A Sánchez-Ferrer , J Ruokolainen , R Mezzenga . . Macromolecules , 2012 . 45 ( 4 ): 1982 - 1990 . DOI:10.1021/ma2026379http://doi.org/10.1021/ma2026379.
J L Kong , S N Yu . . Acta Bioch Bioph Sin , 2007 . 39 ( 8 ): 549 - 559 . DOI:10.1111/abbs.2007.39.issue-8http://doi.org/10.1111/abbs.2007.39.issue-8.
Y H Tao , X Y Chen , F Jia , S X Wang , C S Xiao , F C Cui , Y Q Li , Z Bian , X S Chen , X H Wang . . Chem Sci , 2015 . 6 ( 11 ): 6385 - 6391 . DOI:10.1039/C5SC02479Jhttp://doi.org/10.1039/C5SC02479J.
J B Ball , P F Alewood . . J Mol Recognit , 1990 . 3 ( 2 ): 55 - 64 . DOI:10.1002/(ISSN)1099-1352http://doi.org/10.1002/(ISSN)1099-1352.
D Huesmann , A Birke , K Klinker , S Turk , H J Rader , M Barz . . Macromolecules , 2014 . 47 ( 3 ): 928 - 936 . DOI:10.1021/ma5000392http://doi.org/10.1021/ma5000392.
F K Wolf , H Frey . . Macromolecules , 2009 . 42 ( 24 ): 9443 - 9456 . DOI:10.1021/ma9016746http://doi.org/10.1021/ma9016746.
T Y Zhao , Y Zheng , J Poly , W X Wang . . Nat Commun , 2013 . 4 1873 - 1881 . DOI:10.1038/ncomms2887http://doi.org/10.1038/ncomms2887.
0
Views
29
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution