浏览全部资源
扫码关注微信
教育部高分子合成与功能构造重点实验室 浙江大学高分子科学与工程学系 杭州 310027
Published:20 January 2018,
Received:3 July 2017,
Revised:10 August 2017,
扫 描 看 全 文
Zheng Bo-tuo, Tao Xin-feng, Ling Jun. Water Tolerated Polymerization of
Zheng Bo-tuo, Tao Xin-feng, Ling Jun. Water Tolerated Polymerization of
研究了苄胺引发
N
-取代甘氨酸-
N
-硫代羧酸酐(NNTA)开环聚合.聚合对引发剂当量的水(100~600 μg/g)具有很好的耐受性,能保持良好的可控性,聚类肽产率高(>70%),分子量可控(1600~7500),分子量分布较窄(1.13~1.25).随着水含量的增加(达到单体当量)(14000 μg/g),聚合产率与产物分子量均有不同程度的下降.MALDI-ToF质谱证明所得聚类肽均为苄胺引发产物,水不能引发NNTA聚合.聚合动力学实验表明该聚合体系表现出准一级动力学反应的特征,在不同单体转化率时,聚合物数均分子量与单体转化率呈线性关系,分子量分布窄,证明该聚合体系具有可控性.进一步地,使用未经除水精制处理的市售THF溶剂和未经烘烤除水的反应瓶进行NNTA聚合反应,也表现出很好的可控性.NNTA单体易合成、易储存,聚合时不受微量水的影响,极大地降低了聚类肽的合成难度,有利于聚类肽材料的推广与应用.
N
-Substituted glycine
N
-carboxyanhydride (NNCA) polymerization cannot tolerate H
2
O
because the presence of H
2
O leads to oligopolymerization or deterioration of NCA. In contrast
its analogue
N
-substituted glycine
N
-thiocarboxyanhydride (NNTA) is stable to H
2
O. In this work
by comparing
1
H-NMR spectra signal of NNTA with that of internal standard (trioxane
TOX) before and after heating for 24 h in presence of water
it is shown the tolerance of NNTA to water amount was monomer-equivalent (14000 μg/g). The polymerization of NNTA initiated by benzylamine was carried out in presence of water.
1
H-NMR
MALDI-ToF-MS and SEC were used to confirm the structure of polypeptoid products. The polymerization of
N
-ethyl glycine NTA (NEG-NTA) initiated by benzylamine showed good tolerance to initiator-equivalent water amount (100-650 μg/g). From this polymerization
high yield (
>
70%) was obtained with controlled molecular weights (1600-7500) and low molecular weight distribution (PDI
i.e.
polydispersity index:1.22-1.25). Increasing amount of water (14000 μg/g) suppressed the polymerization
resulting in low yields and low molecular weights to some extent
while PDI remained low. All polymers contained benzylamine end group according to MALDI-ToF-MS
which demonstrated that all the polymerization of NNTA followed the normal amine mechanism (NAM) regardless of different water contents. Polymerizations of sarcosine NTA (Sar-NTA) and
N
-butyl glycine NTA (NBG-NTA) in presence of initiator-equivalent water amount were also investigated. Polymerization of sarcosine NTA resulted in high yield (89%) with controlled molecular weight and low PDI (1.13)
which showed that the polymerization of NNTA with higher activity was more tolerant to water. Furthermore
the polymerization kinetics confirmed the controllability of the resulting polymer by demonstrating that the polymerization followed pseudo-first order kinetics with regard to monomer up to high conversion (~90%). In addition
molecular weights of polypeptoids exhibited linear relationship with monomer conversion while PDIs kept low. It is of great interest that well-controlled NEG-NTA polymerization was carried out in commercial THF with water content (about 190 μg/g) without dehydration. This work demonstrated that the polymerization of NNTA was a robust approach to prepare polypeptoids since both the monomer synthesis and the polymerizations did not require an anhydrous environment
which would benefit the further application of polypeptoids in bioengineering and medical field.
类肽聚-α-氨基酸聚-N-取代甘氨酸氨基酸-N-硫代羧酸酐开环聚合
PolypeptoidPoly(α-amino acid)Poly(N-substituted glycine)Amino acid N-thiocarboxyanhydrideRing-opening polymerization
S D Ganesh , N Saha , O Zandraa , R N Zuckermann , P Sáha . Polym Bull , 2017 . 74 3455 - 3466 . DOI:10.1007/s00289-016-1902-1http://doi.org/10.1007/s00289-016-1902-1.
D Huesmann , A Sevenich , B Weber , M Barz . Polymer , 2015 . 67 240 - 248 . DOI:10.1016/j.polymer.2015.04.070http://doi.org/10.1016/j.polymer.2015.04.070.
R Hoogenboom , H Schlaad . Polym Chem , 2017 . 8 24 - 40 . DOI:10.1039/C6PY01320Ahttp://doi.org/10.1039/C6PY01320A.
A M Rosales , R A Segalman , R N Zuckermann . Soft Matter , 2013 . 9 8400 - 8414 . DOI:10.1039/c3sm51421hhttp://doi.org/10.1039/c3sm51421h.
R Luxenhofer , C Fetsch , A Grossmann . J Polym Sci, Part A:Polym Chem , 2013 . 51 2731 - 2752 . DOI:10.1002/pola.26687http://doi.org/10.1002/pola.26687.
Jingxiao Chen , Huiyuan Wang , Xiaoding Xu , Weihai Chen , Xianzheng Zhang . Acta Polymerica Sinica , 2011 . ( 8 ): 799 - 811 . http://www.gfzxb.org/CN/abstract/abstract13516.shtml.
陈 荆晓 , 王 慧媛 , 许 小丁 , 陈 巍海 , 张 先正 . 高分子学报 , 2011 . ( 8 ): 799 - 811 . http://www.gfzxb.org/CN/abstract/abstract13516.shtml.
X Xu , H Yuan , J Chang , B He , Z Gu . Angew Chem Int Ed , 2012 . 51 3130 - 3133 . DOI:10.1002/anie.v51.13http://doi.org/10.1002/anie.v51.13.
Y Shen , Z Li , H A Klok . Chinese J Polym Sci , 2015 . 33 931 - 946 . DOI:10.1007/s10118-015-1654-7http://doi.org/10.1007/s10118-015-1654-7.
Y Shen , X Fu , W Fu , Z Li . Chem Soc Rev , 2015 . 44 612 - 622 . DOI:10.1039/C4CS00271Ghttp://doi.org/10.1039/C4CS00271G.
Y Jiang , S Wang , X Zhang , Y Tao , X Wang . J Polym Sci, Part A:Polym Chem , 2016 . 54 2618 - 2624 . DOI:10.1002/pola.v54.16http://doi.org/10.1002/pola.v54.16.
Mingzhi Wang , Jianzhong Du . Acta Polymerica Sinica , 2014 . ( 9 ): 1183 - 1194 . http://www.gfzxb.org/CN/abstract/abstract14203.shtml.
王 明智 , 杜 建忠 . 高分子学报 , 2014 . ( 9 ): 1183 - 1194 . http://www.gfzxb.org/CN/abstract/abstract14203.shtml.
S Lv , Z Tang , M Li , J Lin , W Song , H Liu , Y Huang , Y Zhang , X Chen . Biomaterials , 2014 . 35 6118 - 6129 . DOI:10.1016/j.biomaterials.2014.04.034http://doi.org/10.1016/j.biomaterials.2014.04.034.
C Zhou , M Wang , K Zou , J Chen , Y Zhu , J Du . ACS Macro Lett , 2013 . 2 1021 - 1025 . DOI:10.1021/mz400480zhttp://doi.org/10.1021/mz400480z.
C Deng , J Wu , R Cheng , F Meng , H A Klok , Z Zhong . Prog Polym Sci , 2014 . 39 330 - 364 . DOI:10.1016/j.progpolymsci.2013.10.008http://doi.org/10.1016/j.progpolymsci.2013.10.008.
Youhua Tao . Acta Polymerica Sinica , 2016 . ( 9 ): 1151 - 1159 . http://www.gfzxb.org/CN/abstract/abstract14649.shtml.
陶 友华 . 高分子学报 , 2016 . ( 9 ): 1151 - 1159 . http://www.gfzxb.org/CN/abstract/abstract14649.shtml.
M W Thielke , C Secker , H Schlaad , P Theato . Macromol Rapid Commun , 2016 . 37 100 - 104 . DOI:10.1002/marc.v37.1http://doi.org/10.1002/marc.v37.1.
C Fetsch , A Grossmann , L Holz , J F Nawroth , R Luxenhofer . Macromolecules , 2011 . 44 6746 - 6758 . DOI:10.1021/ma201015yhttp://doi.org/10.1021/ma201015y.
N Qiu , X Liu , Y Zhong , Z Zhou , Y Piao , L Miao , Q Zhang , J Tang , L Huang , Y Shen . Adv Mater , 2016 . 28 10613 - 10622 . DOI:10.1002/adma.201603095http://doi.org/10.1002/adma.201603095.
X Liu , J Xiang , D Zhu , L Jiang , Z Zhou , J Tang , X Liu , Y Huang , Y Shen . Adv Mater , 2016 . 28 1743 - 1752 . DOI:10.1002/adma.201504288http://doi.org/10.1002/adma.201504288.
M Barz , R Luxenhofer , R Zentel , M J Vicent . Polym Chem , 2011 . 2 1900 - 1918 . DOI:10.1039/c0py00406ehttp://doi.org/10.1039/c0py00406e.
Y Chen , Z Xu , D Zhu , X Tao , Y Gao , H Zhu , Z Mao , J Ling . J Colloid Interface Sci , 2016 . 483 201 - 210 . DOI:10.1016/j.jcis.2016.08.038http://doi.org/10.1016/j.jcis.2016.08.038.
A Fokina , K Klinker , L Braun , B G Jeong , W K Bae , M Barz , R Zentel . Macromolecules , 2016 . 49 3663 - 3671 . DOI:10.1021/acs.macromol.6b00582http://doi.org/10.1021/acs.macromol.6b00582.
H Zhu , Y Chen , F J Yan , J Chen , X F Tao , J Ling , B Yang , Q J He , Z W Mao . Acta Biomater , 2017 . 50 534 - 545 . DOI:10.1016/j.actbio.2016.12.050http://doi.org/10.1016/j.actbio.2016.12.050.
S Xuan , S Gupta , X Li , M Bleuel , G J Schneider , D Zhang . Biomacromolecules , 2017 . 18 951 - 964 . DOI:10.1021/acs.biomac.6b01824http://doi.org/10.1021/acs.biomac.6b01824.
F Jiao , Y Chen , H Jin , P He , C L Chen , J J De Yoreo . Adv Funct Mater , 2016 . 26 8960 - 8967 . DOI:10.1002/adfm.v26.48http://doi.org/10.1002/adfm.v26.48.
J Sun , X Jiang , A Siegmund , M D Connolly , K H Downing , N P Balsara , R N Zuckermann . Macromolecules , 2016 . 49 3083 - 3090 . DOI:10.1021/acs.macromol.6b00353http://doi.org/10.1021/acs.macromol.6b00353.
D Zhang , S H Lahasky , L Guo , C-U Lee , M Lavan . Macromolecules , 2012 . 45 5833 - 5841 . DOI:10.1021/ma202319ghttp://doi.org/10.1021/ma202319g.
X Tao , C Deng , J Ling . Macromol Rapid Commun , 2014 . 35 875 - 881 . DOI:10.1002/marc.v35.9http://doi.org/10.1002/marc.v35.9.
X Tao , B Zheng , H R Kricheldorf , J Ling . J Polym Sci, Part A:Polym Chem , 2017 . 55 404 - 410 . DOI:10.1002/pola.v55.3http://doi.org/10.1002/pola.v55.3.
X Tao , J Du , Y Wang , J Ling . Polym Chem , 2015 . 6 3164 - 3174 . DOI:10.1039/C5PY00191Ahttp://doi.org/10.1039/C5PY00191A.
X Tao , Y Deng , Z Shen , J Ling . Macromolecules , 2014 . 47 6173 - 6180 . DOI:10.1021/ma501131thttp://doi.org/10.1021/ma501131t.
Y Deng , T Zou , X Tao , V Semetey , S Trepout , S Marco , J Ling , M H Li . Biomacromolecules , 2015 . 16 3265 - 3274 . DOI:10.1021/acs.biomac.5b00930http://doi.org/10.1021/acs.biomac.5b00930.
H R Kricheldorf . α-Aminoacid-N-carboxy-anhydrides and Related Heterocycles:Syntheses, Properties, Peptide Synthesis, Polymerizatio , : Berlin Springer Science & Business Media , 2012 .
X Pan , Y Liu , Z Li , S Cui , H Gebru , J Xu , S Xu , J Liu , K Guo . Macromol Chem Phys , 2017 . 218 1600483 DOI:10.1002/macp.201600483http://doi.org/10.1002/macp.201600483.
I Dimitrov , H Schlaad . Chem Commun , 2003 . 2944 - 2945 . http://www.ncbi.nlm.nih.gov/pubmed/14680253.
Y Hou , J Yuan , Y Zhou , J Yu , H Lu . J Am Chem Soc , 2016 . 138 10995 - 11000 . DOI:10.1021/jacs.6b05413http://doi.org/10.1021/jacs.6b05413.
J Yuan , Y Sun , J Wang , H Lu . Biomacromolecules , 2016 . 17 891 - 896 . DOI:10.1021/acs.biomac.5b01588http://doi.org/10.1021/acs.biomac.5b01588.
R Baumgartner , H Fu , Z Song , Y Lin , J Cheng . Nat Chem , 2017 . 2712 - 2720.
L Guo , S H Lahasky , K Ghale , D Zhang . J Am Chem Soc , 2012 . 134 9163 - 9171 . DOI:10.1021/ja210842bhttp://doi.org/10.1021/ja210842b.
B A Chan , S Xuan , M Horton , D Zhang . Macromolecules , 2016 . 49 2002 - 2012 . DOI:10.1021/acs.macromol.5b02520http://doi.org/10.1021/acs.macromol.5b02520.
T J Deming . Nature , 1997 . 390 386 - 389 . DOI:10.1038/37084http://doi.org/10.1038/37084.
H Peng , W L Chen , J Kong , Z Q Shen , J Ling . Chinese J Polym Sci , 2014 . 32 743 - 750 . DOI:10.1007/s10118-014-1445-6http://doi.org/10.1007/s10118-014-1445-6.
H Peng , J Ling , Z Shen . J Polym Sci, Part A:Polym Chem , 2012 . 50 1076 - 1085 . DOI:10.1002/pola.v50.6http://doi.org/10.1002/pola.v50.6.
H Peng , J Ling , Y Zhu , L You , Z Shen . J Polym Sci, Part A:Polym Chem , 2012 . 50 3016 - 3029 . DOI:10.1002/pola.26077http://doi.org/10.1002/pola.26077.
J Ling , H Peng , Z Shen . J Polym Sci, Part A:Polym Chem , 2012 . 50 3743 - 3749 . DOI:10.1002/pola.v50.18http://doi.org/10.1002/pola.v50.18.
R Holm , B Weber , P Heller , K Klinker , D Westmeier , D Docter , R H Stauber , M Barz . Macromol Biosci , 2017 . 1600514 http://www.ncbi.nlm.nih.gov/pubmed/28198589.
J R Kramer , T J Deming . Biomacromolecules , 2010 . 11 3668 - 3672 . DOI:10.1021/bm101123khttp://doi.org/10.1021/bm101123k.
C Lavilla , M Byrne , A Heise . Macromolecules , 2016 . 49 2942 - 2947 . DOI:10.1021/acs.macromol.6b00498http://doi.org/10.1021/acs.macromol.6b00498.
T Aliferis , H Iatrou , N Hadjichristidis . Biomacromolecules , 2004 . 5 1653 - 1656 . DOI:10.1021/bm0497217http://doi.org/10.1021/bm0497217.
X Tao , B Zheng , T Bai , B Zhu , J Ling . Macromolecules , 2017 . 50 3066 - 3077 . DOI:10.1021/acs.macromol.7b00309http://doi.org/10.1021/acs.macromol.7b00309.
J Ling , Y Huang . Macromol Chem Phys , 2010 . 211 1708 - 1711 . DOI:10.1002/macp.201000115http://doi.org/10.1002/macp.201000115.
J Liu , J Ling . J Phys Chem A , 2015 . 119 7070 - 7074 . DOI:10.1021/acs.jpca.5b04654http://doi.org/10.1021/acs.jpca.5b04654.
T Bai , J Ling . J Phys Chem A , 2017 . 121 4588 - 4593 . DOI:10.1021/acs.jpca.7b04278http://doi.org/10.1021/acs.jpca.7b04278.
0
Views
16
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution