浏览全部资源
扫码关注微信
1.金属基复合材料国家重点实验室 上海交通大学 材料科学与工程学院 上海 200240
2.金属基复合材料国家重点实验室 上海交通大学 化学化工学院 上海 200240
Published:20 January 2018,
Received:10 July 2017,
Revised:31 July 2017,
扫 描 看 全 文
Liu Jin-ying, Qin Ming-gao, Y. Auphedeous Dang-i, Liu Zhi-wei, Dou Xiao-qiu, Feng Chuan-liang. Inversion of Supramolecular Chirality of Nanofibrous Structures Tuned by the Odd-Even Effects among Bis-amide and Bis-urea. [J]. Acta Polymerica Sinica (1):80-89(2018)
Liu Jin-ying, Qin Ming-gao, Y. Auphedeous Dang-i, Liu Zhi-wei, Dou Xiao-qiu, Feng Chuan-liang. Inversion of Supramolecular Chirality of Nanofibrous Structures Tuned by the Odd-Even Effects among Bis-amide and Bis-urea. [J]. Acta Polymerica Sinica (1):80-89(2018) DOI: 10.11777/j.issn1000-3304.2018.17179.
为了模拟生物大分子(如DNA和蛋白质等)螺旋手性反转的现象,设计合成了4种酰胺基或脲基共价连接L-苯丙氨酸和苯环,外围为二甘醇胺与3-氨基-1,2-丙二醇的C
2
对称小分子凝胶因子,利用酰胺基(CONH)与脲基(NHCONH)之间的奇偶效应实现了超分子螺旋手性的反转.通过核磁共振波谱仪(
1
H-NMR和
13
C-NMR),高分辨质谱仪(HRMS)对凝胶因子结构和分子量进行了分析表征.并运用圆二色光谱(CD)、扫描电子显微镜(SEM)、紫外可见吸收光谱(UV-Vis)和红外光谱(FTIR)对其组装纤维结构和组装方式进行研究.实验结果表明酰胺基(CONH)与脲基(NHCONH)之间的奇偶效应改变凝胶因子的组装方式,调控了超分子手性特征,实现了超分子水凝胶螺旋手性的反转.
Helicity inversion of biomacromolecules (
e
.
g
.
DNA or proteins) is a sophisticated ubiquitous phenomenon in many physiological processes and associated with specific bio-functions. Therefore
designing of smart systems
with tunable helical chirality and further promoting their applications in the fields of biochemistry
biology and nano-materials
has become appealing. In this regard
four novel C
2
-symmetric small-molecule gelators
with L-phenylalanine and benzene ring as skeletons covalently linked by amide group (CONH) or urea group (NHCONH)
are designed and synthesized. Based on the odd-even effect between the amide group (CONH) and the urea group (NHCONH)
the chiral reversal of the supramolecular assembly can be regulated. The structures of the compound
a-BDFAE
u-BDFAE
a-BDFAP and u-BDFAP
were confirmed by hydrogen-1 nuclear magnetic resonance(
1
H-NMR)
carbon-13 nuclear magnetic resonance (
13
C-NMR) and high resolution mass spectrum (HRMS). The hydrogels were characterized using circular dichroism spectrum (CD)
and they all exhibited bisignate CD effect. However
the sign and intensity were inverted between the amide and urea molecules. The microstructure of the samples was studied using the scanning electron microscopy (SEM). They all assembled into fine nanofibers with diameter in the range of tens of micrometers. The aggregation pattern of the gelators was also investigated with a UV-Vis spectroscopy in different solvents from non-gelating (ethanol) to gelating (water). Amide molecules showed a broad band at around 241 nm in ethanol
which was red-shifted to 245 nm with the solvent changed to milli-Q water. This red-shift clearly indicates the
J
-type aggregation pattern of the amide hydrogelators. While the UV-Vis spectroscopy of the urea molecules showed a blue-shift
suggesting that the urea molecules formed
H
aggregates
a different mode of self-assembly induced by the inversion of the supramolecular chirality of amide and urea hydrogels. The interaction of supramolecular aggregates at molecular level was investigated using Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the inversion of the supramolecular chirality of nanofibrous structures was tuned by the odd-even effects
providing therefore a new method for the designing of the tunable supramolecular chirality system. This kind of material has the advantages of simple synthesis
good gelation performance
good biocompatibility. Further biology study of the effects of different chiral materials on cell adhesion and proliferation
and differentiation of stem cells are under way in our laboratory.
水凝胶奇偶效应超分子手性反转酰胺键脲基
HydrogelOdd-even effectSupramolecular chirality inversionAmide groupUrea group
M D Zotti , F Formaggio , M Crisma , C Peggion , A Moretto , C Toniolo . J Pept Sci , 2014 . 20 307 - 322 . DOI:10.1002/psc.v20.5http://doi.org/10.1002/psc.v20.5.
G L Wang , L A Christensen , K M Vasquez . Proc Natl Acad Sci USA , 2006 . 103 2677 - 2682 . DOI:10.1073/pnas.0511084103http://doi.org/10.1073/pnas.0511084103.
A Rich , S G Zhang . Nat Rev Genet , 2003 . 4 566 - 572.
A Herbert , A Rich . Genetica , 1999 . 106 37 - 47 . DOI:10.1023/A:1003768526018http://doi.org/10.1023/A:1003768526018.
E G Bellomo , M D Wyrsta , L Pakstis , D J Pochan , T J Deming . Nat Mater , 2004 . 3 244 - 248 . DOI:10.1038/nmat1093http://doi.org/10.1038/nmat1093.
G T Song , J S Ren . Chem Commun , 2010 . 46 7283 - 7294 . DOI:10.1039/c0cc01312ahttp://doi.org/10.1039/c0cc01312a.
E Yashima , K Maeda , H Iida , Y Furusho , K Nagai . Chem Rev , 2009 . 109 6102 - 6211 . DOI:10.1021/cr900162qhttp://doi.org/10.1021/cr900162q.
J J van Gorp , J A J M Vekemans , E W Meijer . J Am Chem Soc , 2002 . 124 14759 - 14769 . DOI:10.1021/ja020984nhttp://doi.org/10.1021/ja020984n.
O Henze , W J Feast , F Gardebien , P Jonkheijm , R Lazzaroni , P Leclère , E W Meijer , A P H J Schenning . J Am Chem Soc , 2006 . 128 5923 - 5929 . DOI:10.1021/ja0607234http://doi.org/10.1021/ja0607234.
F Tao , S L Bernasek . Chem Rev , 2007 . 107 1408 - 1453 . DOI:10.1021/cr050258dhttp://doi.org/10.1021/cr050258d.
T Shimizu , M Masuda . J Am Chem Soc , 1997 . 119 2812 - 2818 . DOI:10.1021/ja961226yhttp://doi.org/10.1021/ja961226y.
B W Messmore , P A Sukerkar , S I Stupp . J Am Chem Soc , 2005 . 127 7992 - 7993 . DOI:10.1021/ja051183yhttp://doi.org/10.1021/ja051183y.
Y T Fu , B Z Li , Z B Huang , Y Li , Y G Yang . Langmuir , 2013 . 29 6013 - 6017 . DOI:10.1021/la400910ghttp://doi.org/10.1021/la400910g.
K Lv , L Zhang , W S Lu , M H Liu . ACS Appl Mater Inter , 2014 . 6 18878 - 18884 . DOI:10.1021/am504702phttp://doi.org/10.1021/am504702p.
G F Liu , D Zhang , C L Feng . Angew Chem Int Ed , 2014 . 53 7789 - 7793 . DOI:10.1002/anie.201403249http://doi.org/10.1002/anie.201403249.
S Marchesan , C D Easton , K E Styan , L J Waddington , F Kushkaki , L Goodall , K M McLean , J S Forsythe , P G Hartley . Nanoscale , 2014 . 6 5172 - 5180 . DOI:10.1039/C3NR06752Ahttp://doi.org/10.1039/C3NR06752A.
Y Yan , K Deng , Z Yu , Z X Wei . Angew Chem Int Ed , 2009 . 48 2003 - 2006 . DOI:10.1002/anie.v48:11http://doi.org/10.1002/anie.v48:11.
S Cantekin , D W R Balkenende , M M J Smulders , A R A Palmans , E W Meijer . Nat Chem , 2011 . 3 42 - 46 . DOI:10.1038/nchem.889http://doi.org/10.1038/nchem.889.
Y Nakano , A J Markvoort , S Cantekin , I A W Filot , H M M ten Eikelder , E W Meijer , A R A Palmans . J Am Chem Soc , 2013 . 135 16497 - 16506 . DOI:10.1021/ja4073645http://doi.org/10.1021/ja4073645.
R Marty , R Nigon , D Leite , H Frauenrath . J Am Chem Soc , 2014 . 136 3919 - 3927 . DOI:10.1021/ja412384phttp://doi.org/10.1021/ja412384p.
R S Johnson , T Yamazaki , A Kovalenko , H Fenniri . J Am Chem Soc , 2007 . 129 5735 - 5743 . DOI:10.1021/ja0706192http://doi.org/10.1021/ja0706192.
Y Li , B Z Li , Y T Fu , S W Lin , Y G Yang . Langmuir , 2013 . 29 9721 - 9726 . DOI:10.1021/la402174whttp://doi.org/10.1021/la402174w.
C X Liu , Q X Jin , K Lv , L Zhang , M H Liu . Chem Commun , 2014 . 50 3702 - 3705 . DOI:10.1039/c4cc00311jhttp://doi.org/10.1039/c4cc00311j.
Y Y Mao , K Y Liu , L Y Meng , L Chen , L M Chen , T Yi . Soft Matter , 2014 . 10 7615 - 7622 . DOI:10.1039/C4SM01213Ehttp://doi.org/10.1039/C4SM01213E.
H Komori , Y Inai . J Org Chem , 2007 . 72 4012 - 4022 . DOI:10.1021/jo0625305http://doi.org/10.1021/jo0625305.
M M J Smulders , I A W Filot , J M Leenders , P van der Schoot , A R Palmans , A P Schenning , E W Meijer . J Am Chem Soc , 2010 . 132 611 - 619 . DOI:10.1021/ja908053dhttp://doi.org/10.1021/ja908053d.
R Oda , I Huc , M Schmutz , S J Candau , F C MacKintosh . Nature , 1999 . 399 566 - 569 . DOI:10.1038/21154http://doi.org/10.1038/21154.
X F Zhu , P F Duan , L Zhang , M H Liu . Chem Eur J , 2011 . 17 3429 - 3437 . DOI:10.1002/chem.v17.12http://doi.org/10.1002/chem.v17.12.
G F Liu , L Y Zhu , W Ji , C L Feng , Z X Wei . Angew Chem Int Ed , 2016 . 55 2411 - 2415 . DOI:10.1002/anie.201510140http://doi.org/10.1002/anie.201510140.
G F Liu , J Y Liu , C L Feng , Y L Zhao . Chem Sci , 2017 . 8 1769 - 1775 . DOI:10.1039/C6SC04808Khttp://doi.org/10.1039/C6SC04808K.
J R Kumita , O S Smart , G A Woolley . Proc Natl Acad Sci USA , 2000 . 97 3803 - 3808 . DOI:10.1073/pnas.97.8.3803http://doi.org/10.1073/pnas.97.8.3803.
R Iwaura , T Shimizu . Angew Chem Int Ed , 2006 . 45 4601 - 4604 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
T Muraoka , H G Cui , S I Stupp . J Am Chem Soc , 2008 . 130 2946 - 2947 . DOI:10.1021/ja711213shttp://doi.org/10.1021/ja711213s.
P F Duan , Y G Li , L C Li , J G Deng , M H Liu . J Phys Chem B , 2011 . 115 3322 - 3329 . DOI:10.1021/jp110636bhttp://doi.org/10.1021/jp110636b.
D P Zhao , T van Leeuwen , J L Cheng , B L Feringa . Nat Chem , 2017 . 9 250 - 256 . DOI:10.1038/nchem.2668http://doi.org/10.1038/nchem.2668.
B S Li , K K L Cheuk , F Salhi , J W Y Lam , J A K Cha , X D Xiao , C L Bai , B Z Tang . Nano Lett , 2001 . 1 323 - 328 . DOI:10.1021/nl015540ohttp://doi.org/10.1021/nl015540o.
P G A Janssen , A Ruiz-Carretero , D González-Rodríguez , E W Meijer , A P H J Schenning . Angew Chem Int Ed , 2009 . 48 8103 - 8106 . DOI:10.1002/anie.v48:43http://doi.org/10.1002/anie.v48:43.
X Q Dou , P Li , D Zhang , C L Feng . J Mate Chem B , 2013 . 1 3562 - 3568 . DOI:10.1039/c3tb20155dhttp://doi.org/10.1039/c3tb20155d.
X Q Dou , D Zhang , C Feng , L Jiang . ACS Nano , 2015 . 9 10664 - 10672 . DOI:10.1021/acsnano.5b04231http://doi.org/10.1021/acsnano.5b04231.
X Q Dou , C L Feng . Adv Mater , 2017 . 29 1604062 - 1604082 . DOI:10.1002/adma.201604062http://doi.org/10.1002/adma.201604062.
A Das , S Ghosh . Chem Eur J , 2010 . 16 13622 - 13628 . DOI:10.1002/chem.v16.46http://doi.org/10.1002/chem.v16.46.
P Choudhury , D Mandal , S Brahmachari , P K Das . Chem Eur J , 2016 . 22 5160 - 5172 . DOI:10.1002/chem.201504888http://doi.org/10.1002/chem.201504888.
0
Views
11
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution