Water-dispersed hyperbranched conjugated polymer nanoparticles (HCPN-QA) with quaternary ammonium salt as terminal groups were prepared by Suzuki polymerization in miniemulsion
followed by post-functionalization reaction
for highly sensitive and selective sensing of picric acid (PA) in aqueous solutions. By taking advantage of the positively charged quaternary ammonium salt terminal groups and hydrophobic cavities inside the hyperbranched core
bright blue emissive HCPN-QA can efficiently bind with PA in water by electrostatic attraction and hydrophobic encapsulation interaction
leading to highly efficient fluorescence quenching. The quenching constant of HCPN-QA was 6.36×10
7
L/mol
which was three orders higher than that of its organic solution-dispersed hyperbranched conjugated polymer nanoparticle analogue (HCPN-OMe). HCPN-QA was capable of sensing PA in water with a detection limit of 7.8×10
-10
mol/L (0.18 μg/L)
which was four orders of magnitude lower than that of HCPN-OMe (0.34 mg/L). Meanwhile
this value was also lower than the maximum permissible level (1 μg/L) for PA in drinking water set by World Health Organization (WHO). Moreover
by decreasing the amount of surfactants during the polymerization
nanoparticles with small diameter were obtained for further studying the relationship between particle size and the sensitivity for PA sensing. The fluorescent titration study indicated that particle size of HCPN-QA had little effect on the sensitivity for PA sensing. Furthermore
by combining electrostatic attraction and hydrophobic encapsulation interaction
HCPN-QA also showed much higher fluorescence quenching response to PA over other analytes
including 2
4
6-trinitrotoluene (TNT)
2
4-dinitrotoluene (DNT)
nitrobenzene
cyclotetramethylenetetranitramine (HMX)
1
3
5-trinitro-1
3
5-triazinane (RDX)
nitromethane
ammonium nitrate
chlorobenzene
toluene and phenol in water. Especially
HCPN-QA showed nearly 60-fold higher quenching constant for PA than that of TNT
indicating that HCPN-QA had not only a high sensitivity
but also a good selectivity for PA sensing. In addition
contact mode detection was further performed using fluorescent paper strips based on HCPN-QA for naked eye detection of PA with a detection limit of 66 pg/mm
T Li , Y L Shao , S T Zhang , J C Qin , L Fan , L Liu , B D Wang , Z Y Yang , Y H Wang . J Lumin , 2017 . 181 345 - 351 . DOI:10.1016/j.jlumin.2016.09.036http://doi.org/10.1016/j.jlumin.2016.09.036.
W Wei , R J Lu , S Y Tang , X Y Liu . J Mater Chem A , 2015 . 3 ( 8 ): 4604 - 4611 . DOI:10.1039/C4TA06828Ahttp://doi.org/10.1039/C4TA06828A.
S Shanmugaraju , C Dabadie , K Byrne , A J Savyasachi , D Umadevi , W Schmitt , JA Kitchen , T Gunnlaugsson . Chem Sci , 2017 . 8 ( 2 ): 1535 - 1546.
R G Ewing , D A Atkinson , G A Eiceman , G J Ewing . Talanta , 2001 . ( 54 ): 515 - 529.
Y Zhang , X X Ma , S C Zhang , C H Yang , Z Ouyang , X R Zhang . Analyst , 2009 . 134 ( 1 ): 176 - 181 . DOI:10.1039/B816230Ahttp://doi.org/10.1039/B816230A.
R D Luggar , M J Farquharson , J A Horrocks , R J Lacey . X-Ray Spectrometry , 1998 . 27 82 - 94.
J R Huang , L Y Wang , C C Shi , Y J Dai , C P Gu , J H Liu . Sens Actuat B , 2014 . ( 196 ): 567 - 573.
A Tao , F Kim , C Hess , J Goldberger , R R He , Y G Sun , P D Yang . Nano Lett , 2003 . 3 ( 9 ): 1229 - 1233 . DOI:10.1021/nl0344209http://doi.org/10.1021/nl0344209.
S Shanmugaraju , P S Mukherjee . Chemistry , 2015 . 21 ( 18 ): 6656 - 6666 . DOI:10.1002/chem.201406092http://doi.org/10.1002/chem.201406092.
T H Liu , K R Zhao , K Liu , L P Ding , S W Yin , Y Fang . J Hazard Mater , 2013 . ( 246-247 ): 52 - 60.
Y Q Xu , B H Li , W W Li , J Zhao , S G Sun , Y Pang . Chem Commun (Camb) , 2013 . 49 ( 42 ): 4764 - 4766 . DOI:10.1039/c3cc41994khttp://doi.org/10.1039/c3cc41994k.
S G Liu , D Luo , N Li , W Zhang , J L Lei , N B Li , H Q Luo . ACS Appl Mater Interfaces , 2016 . 8 ( 133 ): 21700 - 21709.
L P Ding , Y M Bai , Y Gao , G J Ren , G J Blanchard , Y Fang . Langmuir , 2014 . 30 ( 26 ): 7645 - 7653 . DOI:10.1021/la5011264http://doi.org/10.1021/la5011264.
Q Zhou , T M Sawager . J Am Chem Soc , 1995 . 117 ( 50 ): 12593 - 12602 . DOI:10.1021/ja00155a023http://doi.org/10.1021/ja00155a023.
S W Thomas , G D Joly , T M Swager . Chem Rev , 2007 . 107 ( 4 ): 1339 - 1386 . DOI:10.1021/cr0501339http://doi.org/10.1021/cr0501339.
W B Wu , R L Tang , Q Q Li , Z Li . Chem Soc Rev , 2015 . 12 ( 44 ): 3997 - 4022.
W B Wu , S H Ye , L J Huang , L Xiao , Y J Fu , Q Huang , G Yu , Y Q Liu , J G Qin , Q Q Li , Z Li . J Mater Chem , 2012 . 13 ( 22 ): 6374 - 6382.
K R Ghosh , S K Saha , Z Y Wang . Polym Chem , 2014 . 5 ( 19 ): 5638 - 5643.
T M Geng , Z M Zhu , X Wang , H Y Xia , Y Wang , D K Li . Sens Actuators B , 2107 . 244 334 - 343.
H B Li , X F Wu , B W Xu , H Tong , L X Wang . RSC Adv , 2013 . 3 8645 - 8648 . DOI:10.1039/c3ra40901ehttp://doi.org/10.1039/c3ra40901e.
S Shaligram , P P Wadgaonkar , U K Kharul . J Mater Chem A , 2014 . 2 ( 34 ): 13983 - 13989 . DOI:10.1039/C4TA02766Chttp://doi.org/10.1039/C4TA02766C.
A H Malik , S Hussain , S A Kalita , P K Iyer . ACS Appl Mater Interfaces , 2015 . 7 ( 48 ): 26968 - 26976 . DOI:10.1021/acsami.5b08068http://doi.org/10.1021/acsami.5b08068.
Z H Xiang , D P Cao . Macromol Rapid Commun , 2012 . 33 ( 14 ): 1184 - 1190.
Y Y Long , H B Chen , H M Wang , Z Peng , Y F Yang , G Q Zhang , N Li , F Liu , J Pei . Anal Chim Acta , 2012 . 744 82 - 91 . DOI:10.1016/j.aca.2012.07.028http://doi.org/10.1016/j.aca.2012.07.028.
G Sathiyan , P Sakthivel . RSC Adv , 2016 . 6 ( 108 ): 106705 - 106715 . DOI:10.1039/C6RA22632Ahttp://doi.org/10.1039/C6RA22632A.
T M Geng , S N Ye , Y Wang , H Zhu , X Wang , X Liu . Talanta , 2017 . 165 282 - 288 . DOI:10.1016/j.talanta.2016.12.046http://doi.org/10.1016/j.talanta.2016.12.046.
N N Sang , C X Zhan , D P Cao . J Mater Chem A , 2015 . 3 ( 1 ): 92 - 96 . DOI:10.1039/C4TA04903Ahttp://doi.org/10.1039/C4TA04903A.
B W Xu , X F Wu , H B Li , H Tong , L X Wang . Macromolecules , 2011 . 44 ( 13 ): 5089 - 5092 . DOI:10.1021/ma201003fhttp://doi.org/10.1021/ma201003f.
Y C Wu , S H Luo , L Cao , K Jiang , L Y Wang , J C Xie , Z Y Wang . Anal Chim Acta , 2017 . 976 74 - 83 . DOI:10.1016/j.aca.2017.04.022http://doi.org/10.1016/j.aca.2017.04.022.
A S Tanwar , S Hussain , A H Malik , M A Afroz , P K Iyer . ACS Sensors , 2016 . 1 ( 8 ): 1070 - 1077 . DOI:10.1021/acssensors.6b00441http://doi.org/10.1021/acssensors.6b00441.
J Z Liu , Y C Zhong , P Lu , Y Hong , J W Y Lam , M Faisal , Y Yu , K S Wong , B Z Tang . Polym Chem , 2010 . 1 ( 4 ): 426 - 429.
Y W Wu , A J Qin , B Z Tang . Chinese J Polym Sci , 2017 . 2 ( 35 ): 141 - 154.
X F Wu , H Hang , H Li , Y H Chen , H Tong , L X Wang . Mater Chem Front , 2017 . 1 1875 - 1880.
Studies of Selective Detection of Picric Acid in Solution Phase Using Fluorescent Polyphosphazene Nanofibers
Construction of Nanoparticle/Polymer Composite Photothermal Nanoplatforms and Therapeutic Applications
Related Author
No data
Related Institution
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
College of Chemistry and Chemical Engineering, Taishan University
School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University
The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
State Key Laboratory of Supramolecular Structure and Materials, Jilin University