Xiao Yu-juan, He Qian-nan, Zhou Huan-yu, Xu Hai-tao, Tan Li-cheng, Chen Yi-wang. In situ Polymerization of PEDOT: π-Conjugated Polyelectrolyte and Application as Hole Transport Layer in Polymer Solar Cells. [J]. Acta Polymerica Sinica (2):257-265(2018)
DOI:
Xiao Yu-juan, He Qian-nan, Zhou Huan-yu, Xu Hai-tao, Tan Li-cheng, Chen Yi-wang. In situ Polymerization of PEDOT: π-Conjugated Polyelectrolyte and Application as Hole Transport Layer in Polymer Solar Cells. [J]. Acta Polymerica Sinica (2):257-265(2018) DOI: 10.11777/j.issn1000-3304.2018.17215.
In situ Polymerization of PEDOT: π-Conjugated Polyelectrolyte and Application as Hole Transport Layer in Polymer Solar Cells
4-ethylenedioxythiophene) (PEDOT) is usually dispersed in water by incorporating polystyrene sulfonate (PSS) as a charge compensator and a template for polymerization. The polymerization behavior of 3
4-ethylenedioxythiophene (EDOT) without assistance of insulating PSS was explored. Due to their semiconducting and hydrophilic characteristics
π
-conjugated polyelectrolytes with sulfonic acid groups
namely PCPDT-T and PCPDT-2T
were used as template for
in situ
oxidative polymerization of PEDOT. The obtained PEDOT:polyelectrolyte composites showed good dispersibility in aqueous solution
which was used as hole transport layer (HTL) in polymer solar cells (PSCs). The morphologies and photoelectric properties of PEDOT:PSS and PEDOT:polyelectrolyte composites were characterized by Fourier transform infrared spectroscopy
ultraviolet-visible spectroscopy
ultraviolet photoelectron spectroscopy
atomic force microscopy
transmission electron microscopy and contact angle test
respectively. PEDOT:polyelectrolyte composites displayed suitable energy level
transmittance up to 95% (30 nm)
hydrophobic surface morphology
as well as superior hole mobility
which were in favour of forming Ω contact with the active layer and increasing the injection and collection efficiency of the holes. Thus
improving the device photovoltaic performance. The current density-voltage (J-V) characteristics of the PSCs with the structure of Glass/ITO/HTL/PTB7-Th:PC
71
BM/PFN/Al were measured under one standard sun by solar simulator with an Air Mass 1.5 global (AM 1.5G) and an irradiation intensity of 100 mW/cm
2
. Compared to the photovoltaic characteristics for PEDOT:PSS based device
PSCs with PEDOT:T (1:2) as HTL yielded the highest power conversion efficiency (PCE) of 8.6% with a short current density (
J
SC
) of 18.07 mA/cm
2
open circuit voltage (
V
OC
) of 0.77 and fill factor (FF) of 61.31%
respectively. Compared to that of PEDOT:PSS
the obvious increased
J
SC
for PEDOT:polyelectrolyte composites based PSCs was ascribed to the high hole mobility and transmittance
which were consistent with the results from the space-charge limited current (SCLC) method and the external quantum efficiency (EQE) measurement.
关键词
聚(3 4-乙烯二氧噻吩)聚电解质原位聚合聚合物太阳能电池复合材料
Keywords
Poly (3 4-ethylenedioxythiophene)PolyelectrolyteIn situ polymerizationPolymer solar cellsComposite
references
C K Chiang , C R J Fincher , Y W Park , A J Heeger , H Shirakawa , E J Louis , S C Gau , A G MacDiarmid . Phys Rev Lett , 1977 . 39 1098 - 1101 . DOI:10.1103/PhysRevLett.39.1098http://doi.org/10.1103/PhysRevLett.39.1098.
V N Sheemol , B TyagvI , R V Jasra . J Mol Catal A Chem , 2006 . 252 194 - 201 . DOI:10.1016/j.molcata.2006.01.068http://doi.org/10.1016/j.molcata.2006.01.068.
L Groenendaal , F Jonas , D Freitag , H Pielartzik , J R Reynolds . Adv Mater , 2000 . 12 481 - 494 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
S Kirchmeyer , K Reuter . J Mater Chem , 2005 . 15 2077 - 2088 . DOI:10.1039/b417803nhttp://doi.org/10.1039/b417803n.
J Ouyang , C W Chu , F C Chen , Q Xu , Y Yang . Adv Funct Mater , 2005 . 15 203 - 208 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028.
A I Hofmann , W T T Smaal , M Mumtaz , D D Katsigiannopoulos , D C Brochon , F Brochon , D O R Hild , H D E Cloutet , P D G Hadziioannou . Angew Chem Int Ed , 2015 . 127 8626 - 8630 . DOI:10.1002/ange.201503024http://doi.org/10.1002/ange.201503024.
Y Tao , K Yuan , T Chen , P Xu , H Li , R Chen , C Zheng , L Zhang , W Huang . Adv Mater , 2014 . 26 7931 - 7958 . DOI:10.1002/adma.v26.47http://doi.org/10.1002/adma.v26.47.
T Heumueller , W R Mateker , A Distler , U F Fritze , R Cheacharoen , W H Nguyen , M Biele , M Salvador , M von Delius , H J Egelhaaf , M D McGehee , C J Brabec . Energy Environ Sci , 2016 . 9 247 - 256 . DOI:10.1039/C5EE02912Khttp://doi.org/10.1039/C5EE02912K.
C Zuo , H J Bolink , H Han , J Huang , D Cahen , L Ding . Adv Sci , 2016 . 3 1500324 DOI:10.1002/advs.201500324http://doi.org/10.1002/advs.201500324.
D Alemu , H Y Wei , K C Ho , C W Chu . Energy Environ Sci , 2012 . 5 9662 - 9671 . DOI:10.1039/c2ee22595fhttp://doi.org/10.1039/c2ee22595f.
K Nara , K Seyoung , H L Seoung , H L Byoung , H K Yung , R J Yong , J K Bong , L Kwanghee . Adv Mater , 2014 . 26 2268 - 2272 . DOI:10.1002/adma.v26.14http://doi.org/10.1002/adma.v26.14.
W Meng , R Ge , Z F Li , J H Tong , T F Liu , Q Zhao , S X Xiong , F Y Jiang , L Mao , Y H Zhou . ACS Appl Mater Interfaces , 2015 . 7 14089 - 14094 . DOI:10.1021/acsami.5b03309http://doi.org/10.1021/acsami.5b03309.
F J Lim , K Ananthanarayanan , J Luther , G W Ho . J Mater Chem , 2012 . 22 25057 - 25064 . DOI:10.1039/c2jm35646ehttp://doi.org/10.1039/c2jm35646e.
G Fang , S Wu , Z Xie , Y Geng , L Wang . Macromol Chem Phys , 2011 . 212 1846 - 1851.
B Kadem , W Cranton , A Hassan . Org Electron , 2015 . 24 73 - 79 . DOI:10.1016/j.orgel.2015.05.019http://doi.org/10.1016/j.orgel.2015.05.019.
M G Han , S H Foulger . Chem Commun , 2005 . 1 3092 - 3094.
X Zhang , J-S Lee , G S Lee , D-K Cha , M J Kim , D J Yang , S K Manohar . Macromolecules , 2006 . 39 470 - 472 . DOI:10.1021/ma051975chttp://doi.org/10.1021/ma051975c.
D Hohnholz , A G MacDiarmid , D M Sarno , W E J Jr . Chem Commun , 2001 . 23 2444 - 2445.
X Du , Z Wang . Electrochim Acta , 2003 . 48 1713 - 1717 . DOI:10.1016/S0013-4686(03)00143-9http://doi.org/10.1016/S0013-4686(03)00143-9.
Y D Li , M Y Liu , Y Li , K Yun , L J Xu , W Wu , R F Chen , X Q Qin , H L Yip . Adv Energy Mater , 2016 . 6 1601499 .
H T Xu , X Fu , X F Cheng , L Q Huang , D Zhou , L Chen , Y W Chen . J Mater Chem A , 2017 . 5 14689 - 14696 . DOI:10.1039/C7TA02590Dhttp://doi.org/10.1039/C7TA02590D.
H Dan , G Yang , J Song , L Niu , A Ivaska . J Electroanal Chem , 2007 . 602 24 - 28 . DOI:10.1016/j.jelechem.2006.11.027http://doi.org/10.1016/j.jelechem.2006.11.027.
S Braun , W R Salaneck , M Fahlman . Adv Mater , 2009 . 21 1450 - 1472 . DOI:10.1002/adma.v21:14/15http://doi.org/10.1002/adma.v21:14/15.
Y J Cheng , C H Hsieh , P J Li , C S Hsu . Adv Funct Mater , 2011 . 21 1723 - 1732 . DOI:10.1002/adfm.201002502http://doi.org/10.1002/adfm.201002502.
H Zhou , Y Zhang , C K Mai , S D Collins , T Q Nguyen , G C Bazan , A J Heeger . Adv. Mater , 2014 . 26 780 - 785 . DOI:10.1002/adma.201302845http://doi.org/10.1002/adma.201302845.
S A Chen , M Y Hua . Macromolecules , 1993 . 26 7108 - 7110 . DOI:10.1021/ma00077a066http://doi.org/10.1021/ma00077a066.
Estimating the Molecular Weight of Polyelectrolyte by Single-molecule Force Spectroscopy
Effects of Solvent on Helical Wrapping of Single-walled Carbon Nanotubes by Poly(p-phenyleneethynylene-alt-m-phenyleneethynylene)
Applications of Fluorescence Correlation Spectroscopy in the Study of Single Chains of Polymers
Synthesis and Applications of Porous Graphene
Related Author
No data
Related Institution
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University
Department of Ophthalmology, Zhongda Hospital, Southeast University
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University
State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications