浏览全部资源
扫码关注微信
山东省高等学校生物基高分子材料重点实验室 青岛科技大学高分子科学与工程学院 青岛 266042
Published:20 January 2018,
Received:6 August 2017,
Revised:29 August 2017,
扫 描 看 全 文
Sun Jing, Li Zhi-bo. Studies on Polypeptoid and Its Structure-Property Relationship. [J]. Acta Polymerica Sinica (1):1-8(2018)
Sun Jing, Li Zhi-bo. Studies on Polypeptoid and Its Structure-Property Relationship. [J]. Acta Polymerica Sinica (1):1-8(2018) DOI: 10.11777/j.issn1000-3304.2018.17220.
聚类肽又称为氮取代聚甘氨酸(
N
-聚甘氨酸),是一类具有优良生物相容性以及生物活性的可降解高分子材料.由于酰胺键的活泼氢被取代,聚类肽主链结构中消除了聚肽固有的多重氢键相互作用,其主链柔性较好,聚合物性质主要由侧链基团的种类及其物理化学性质决定.基于这种链结构特征,可以通过设计不同的侧基结构,有效地调节聚类肽高分子的热力学性能、降解性能和自组装行为等物理化学性质.合成聚类肽的方法主要有2种——开环聚合和固相合成.本文主要介绍了聚类肽高分子的本体与溶液自组装行为,系统阐明了如何通过调控聚类肽高分子的侧链结构,研究链结构与自组装行为之间的相互关系,进一步构筑具有独特相分离行为以及自组装结构的新型生物高分子,同时探讨了这些材料在生物医用和能源等领域的潜在应用.
Polypeptoids
also referred as poly(
N
-substituted glycines)
are an emerging class of bioinspired polymers with excellent biocompatibility and potent biological activities. The polypeptoid has identical backbone compared to that of the polypeptide. Unlike the polypeptide
the side chain of the polypeptoid is covalently attached to the amide nitrogen instead of
α
-carbon in the main chain. It thus removes inter-and intra-chain hydrogen bonding in the backbone and also eliminates the main chain chirality
which results in substantial backbone flexibility. This allows for good solubility in many common solvents and accessible thermal processibility. In addition
the properties of polypeptoids are dominated by the side chain identity and physical-chemical properties
which enables the polypeptoids highly designable. By careful engineering and design of the side-chain structure
the secondary conformation
thermal property and degradability of the polypeptoids can be finely tuned. All these advantages make polypeptoids promising candidates for potential applications in nanoscience and biomedicine. The polypeptoid can be prepared by two distinct synthetic techniques that offer access to two material sub-classes. A two-step submonomer synthetic method that excludes main chain protecting groups has been developed based on the solid-phase peptide synthesis (SPPS). This approach enables precision structural control and near absolute monodispersity of the polymers. A classical polymerization approach can achieve high molecular weight of the polypeptoids. The combination of solid-phase synthesis with polymerization technique offers great opportunities to tailor structural design and to systematically investigate the relationship between structure and property of the polymers. It enables the preparation of next generation of bio-inspired polymeric materials with advanced functional properties. In this article
we discuss recent developments of the microphase separation and self-assembling behavior of the polypeptoids. We focus on the approach to systematically study the relationship of chemical structure and self-assembly behavior by finely tuning the side-chain structure of the polypeptoids
and to further obtain the novel biopolymers with extraordinary microphase separation behavior and self-assembling nanostructures. The potential applications in biomedicine and energy storage are also discussed.
聚类肽固相合成开环聚合自组装
PolypeptoidSolid-phase synthesisRing-opening polymerizationSelf-assembly
B M Discher , Y Y Won , D S Ege , J Lee , F S Bates , D E Discher . . Science , 1999 . 284 1143 - 1145 . DOI:10.1126/science.284.5417.1143http://doi.org/10.1126/science.284.5417.1143.
M Matsuzawa , K Kobayashi , K Sugioka , W Knoll . . J Colloid Interface Sci , 1998 . 202 213 - 221 . DOI:10.1006/jcis.1998.5409http://doi.org/10.1006/jcis.1998.5409.
A Krause , E A Cowles , G Gronowicz . . J Biomed Mater Res , 2000 . 52 738 - 747 . DOI:10.1002/(ISSN)1097-4636http://doi.org/10.1002/(ISSN)1097-4636.
T J Deming . . Adv Drug Deliver Rev , 2002 . 54 1145 - 1155 . DOI:10.1016/S0169-409X(02)00062-5http://doi.org/10.1016/S0169-409X(02)00062-5.
A Rsler , G W Vandermeulen , H A Klok . . Adv Drug Deliver Rev , 2001 . 53 95 - 108 . DOI:10.1016/S0169-409X(01)00222-8http://doi.org/10.1016/S0169-409X(01)00222-8.
Y Lee , S Fukushima , Y Bae , S Hiki , T Ishii , K Kataoka . . J Am Chem Soc , 2007 . 129 5362 - 5362 . DOI:10.1021/ja071090bhttp://doi.org/10.1021/ja071090b.
H Kukula , H Schlaad , M Antonietti , S Forster . . J Am Chem Soc , 2002 . 124 1658 - 1663 . DOI:10.1021/ja012091lhttp://doi.org/10.1021/ja012091l.
O Rathore , D Y Sogah . . Macromolecules , 2001 . 34 1477 - 1486 . DOI:10.1021/ma001553xhttp://doi.org/10.1021/ma001553x.
Hernandez J Rodriguez , S Lecommandoux . . J Am Chem Soc , 2005 . 127 2026 - 2027 . DOI:10.1021/ja043920ghttp://doi.org/10.1021/ja043920g.
S A Fowler , R Luechapanichkul , H E Blackwell . . J Org Chem , 2009 . 74 1440 - 1449 . DOI:10.1021/jo8023363http://doi.org/10.1021/jo8023363.
K Kirshenbaum , A E Barron , R A Goldsmith , P Armand , E K Bradley , K T V Truong , A DillK , F E Cohen , R N Zuckermann . . Proc Natl Acad Sci, USA , 1998 . 95 4303 - 4306 . DOI:10.1073/pnas.95.8.4303http://doi.org/10.1073/pnas.95.8.4303.
J Sun , R N Zuckermann . . ACS Nano , 2013 . 7 4715 - 4732 . DOI:10.1021/nn4015714http://doi.org/10.1021/nn4015714.
M M Reddy , R Wilson , J Wilson , S Connell , A Gocke , L Hynan , D German , T Kodadek . . Cell , 2011 . 144 132 - 142 . DOI:10.1016/j.cell.2010.11.054http://doi.org/10.1016/j.cell.2010.11.054.
K Kirshenbaum , R N Zuckermann , K A Dill . . Curr Opin Struc Biol , 1999 . 9 530 - 535 . DOI:10.1016/S0959-440X(99)80075-Xhttp://doi.org/10.1016/S0959-440X(99)80075-X.
R N Zuckermann . . Peptoid Origins Pept Sci , 2011 . 96 545 - 555 . DOI:10.1002/bip.21573http://doi.org/10.1002/bip.21573.
R N Zuckermann , T Kodadek . . Curr Opin Mo Ther , 2009 . 11 299 - 307 . http://www.ncbi.nlm.nih.gov/pubmed/19479663.
D H Zhang , S H Lahasky , L Guo , C U Lee , M Lavan . . Macromolecules , 2012 . 45 5833 - 5841 . DOI:10.1021/ma202319ghttp://doi.org/10.1021/ma202319g.
N Gangloff , J Ulbricht , T Lorson , H Schlaad , R Luxenhofer . . Chem Rev , 2016 . 116 1753 DOI:10.1021/acs.chemrev.5b00201http://doi.org/10.1021/acs.chemrev.5b00201.
A S Knight , E Y Zhou , M B Francis , R N Zuckermann . . Adv Mater , 2015 . 27 5665 DOI:10.1002/adma.v27.38http://doi.org/10.1002/adma.v27.38.
R J Simon , R S Kania , R N Zuckermann , V D Huebner , D A Jewell , S Banville , S Ng , L Wang , S Rosenberg , C K Marlowe . . Proc Natl Acad Sci, USA , 1992 . 89 9367 - 9370 . DOI:10.1073/pnas.89.20.9367http://doi.org/10.1073/pnas.89.20.9367.
H R Kricheldorf , C von Lossow , G Schwarz . . Macromol Chem Phys , 2004 . 205 918 - 924 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935.
H R Kricheldorf , C von Lossow , G Schwarz . . J Polym Sci, Part B:Polym Phys , 2005 . 43 5690 - 5698 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
L Guo , D Zhang . . J Am Chem Soc , 2009 . 131 18072 - 18074 . DOI:10.1021/ja907380dhttp://doi.org/10.1021/ja907380d.
J W Robinson , H Schlaad . . Chem Commun , 2012 . 48 7835 - 7838 . DOI:10.1039/c2cc33881ehttp://doi.org/10.1039/c2cc33881e.
J W Robinson , C Secker , S Weidner , H Schlaad . . Macromolecules , 2013 . 46 580 - 587 . DOI:10.1021/ma302412vhttp://doi.org/10.1021/ma302412v.
X F Tao , C Deng , J Ling . . Macromol Rapid Commun , 2014 . 35 875 - 881 . DOI:10.1002/marc.v35.9http://doi.org/10.1002/marc.v35.9.
F S Bates . . Science , 1991 . 251 898 - 905 . DOI:10.1126/science.251.4996.898http://doi.org/10.1126/science.251.4996.898.
A M Rosales , B L McCulloch , R N Zuckermann , R A Segalman . . Macromolecules , 2012 . 45 6027 - 6035 . DOI:10.1021/ma300625bhttp://doi.org/10.1021/ma300625b.
J Sun , A A Teran , X Liao , N P Balsara , R N Zuckermann . . J Am Chem Soc , 2013 . 135 14119 - 14124 . DOI:10.1021/ja404233dhttp://doi.org/10.1021/ja404233d.
J Sun , A A Teran , X Liao , N P Balsara , R N Zuckermann . . J Am Chem Soc , 2014 . 136 2070 - 2077 . DOI:10.1021/ja412123yhttp://doi.org/10.1021/ja412123y.
S Jain , F S Bates . . Science , 2004 . 300 460 - 464 . http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000007000017000077000001&idtype=cvips&gifs=Yes.
Y X Ni , J Sun , Y H Wei , X H Fu , C H Zhu , Z B Li . . Biomacromolecules , 2017 . 18 3367 - 337 . DOI:10.1021/acs.biomac.7b01014http://doi.org/10.1021/acs.biomac.7b01014.
K T Nam , S A Shelby , P H Choi , A B Marciel , R Chen , L Tan , T K Chu , R A Mesch , B C Lee , M D Connolly . . Nat Mater , 2010 . 9 454 - 460 . DOI:10.1038/nmat2742http://doi.org/10.1038/nmat2742.
B Sanii , R Kudirka , A Cho , N Venkateswaran , G K Olivier , A M Olson , H Tran , R M Harada , L Tan , R N Zuckermann . . J Am Chem Soc , 2011 . 133 20808 - 20815 . DOI:10.1021/ja206199dhttp://doi.org/10.1021/ja206199d.
G K Olivier , A Cho , B Sanii , M D Connolly , H Tran , R N Zuckermann . . ACS Nano , 2015 . 7 9276 http://pubs.acs.org/doi/abs/10.1021/nn403899y.
H K Murnen , A M Rosales , J N Jaworski , R A Segalman , R N Zuckermann . . J Am Chem Soc , 2010 . 132 16112 - 16119 . DOI:10.1021/ja106340fhttp://doi.org/10.1021/ja106340f.
S H Lahasky , X Hu , D Zhang . . ACS Macro Lett , 2012 . 1 580 - 584 . DOI:10.1021/mz300017yhttp://doi.org/10.1021/mz300017y.
J Sun , X Jiang , R Lund , K H Downing , N P Balsara , R N Zuckermann . . Proc Natl Acad Sci, USA , 2016 . 113 201517169 .
T Kidchob , S Kimura , Y Imanishi . . J Control Release , 1998 . 50 205 - 214 . DOI:10.1016/S0168-3659(97)00135-1http://doi.org/10.1016/S0168-3659(97)00135-1.
P Heller , A Birke , D Huesmann , B Weber , K Fischer , A Reske-Kunz , M Bros , M Barz . . Macromol Biosci , 2014 . 14 1380 - 1395 . DOI:10.1002/mabi.201400167http://doi.org/10.1002/mabi.201400167.
J Sun , JiangX , A Siegmund , K H Downing , N P Balsara , R N Zuckermann . . Macromolecules , 2016 . 49 3083 - 3090 . DOI:10.1021/acs.macromol.6b00353http://doi.org/10.1021/acs.macromol.6b00353.
J Sun , G M Stone , N P Balsara , R N Zuckermann . . Macromolecules , 2012 . 45 5151 - 5156 . DOI:10.1021/ma300775bhttp://doi.org/10.1021/ma300775b.
J Sun , X Liao , A M Minor , N P Balsara , R N Zuckermann . . J Am Chem Soc , 2014 . 136 14990 DOI:10.1021/ja5080689http://doi.org/10.1021/ja5080689.
0
Views
35
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution