Ping Fu, Xin Guo, Can Li. Ionic Liquids Containing Different Halogen Anions as Cathode Interlayer for Inverted Polymer Solar Cells. [J]. Acta Polymerica Sinica (2):266-272(2018)
DOI:
Ping Fu, Xin Guo, Can Li. Ionic Liquids Containing Different Halogen Anions as Cathode Interlayer for Inverted Polymer Solar Cells. [J]. Acta Polymerica Sinica (2):266-272(2018) DOI: 10.11777/j.issn1000-3304.2018.17234.
Ionic Liquids Containing Different Halogen Anions as Cathode Interlayer for Inverted Polymer Solar Cells
Bulk-heterojunction polymer solar cells (PSCs) have attracted great research attention owing to their advantages of low cost
light weight
and their feasibility to fabricate flexible devices. Power conversion efficiency (PCEs) exceeding 12% for single-junction invertedpolymer solar cells (IPSCs) has been reported in the last years. Fast advancement of PCE benefits mainly from new materials synthesized
morphology optimization of active layer and interfacial engineering. Especially
the interfacial engineering has drawn great attention in recent years. To fabricate efficient IPSCs
a cathode interlayer (CIL) is usually needed between the ITO cathode and the photoactive layer to reduce the work function (WF) of the ITO cathode and to lower the energy barriersfor efficient charge-transfer due to an energy-level mismatch between the high WF of ITO cathode and the lowest unoccupied molecular orbital (LUMO) level of fullerene acceptor. In this work
we employed ionic liquids with different halogen anions as CILs for efficient IPSCs
and explored the influence of such halogen anions on the PCE of the IPSCs. A PCE of 6.55% was achieved for the IPSCs with ionic liquids as the CIL and PBDTTT-C:PC
71
BM as the active layer
much higher than those without the CIL. When using the PTB7-Th:PC
71
BM as the active layer
a higher PCE of 8.24% was obtained. Ionic liquids could effectively reduce the contact barrier and the series resistance between the ITO cathode and the active layer due to the interfacial dipole
and thus improving the PCE of the IPSCs. Meanwhile
it was found that the IPSC with iodide ionic liquid ([BzMIM]Ⅰ) as the CIL could afford a higher PCE than that with bromide or chloride ionic liquids ([BzMIM]
Cl
[BzMIM]Br)
mainly attributing to the greater decreases of the ITO work function and the contact resistance in the case with the former ([BzMIM]
Ⅰ) as the CIL.
关键词
聚合物太阳电池阴极界面层离子液体卤素阴离子
Keywords
Polymer solar cellsCathode interlayerIonic liquidsHalogen anion
references
S Gunes , H Neugebauer , N S Sariciftci . Chem Rev , 2007 . 107 ( 4 ): 1324 - 1338 . DOI:10.1021/cr050149zhttp://doi.org/10.1021/cr050149z.
P Fu , X Guo , B Zhang , T Chen , W Qin , Y Ye , J H Hou . J Mater Chem A , 2016 . 4 ( 43 ): 16824 - 16829 . DOI:10.1039/C6TA07105Hhttp://doi.org/10.1039/C6TA07105H.
X F Liao , J Wang , S Y Chen , L Chen , Y W Chen . Chinese J Polym Sci , 2016 . 34 ( 4 ): 491 - 504 . DOI:10.1007/s10118-016-1761-0http://doi.org/10.1007/s10118-016-1761-0.
Z C He , C M Zhong , S J Su , M Xu , H B Wu , Y Cao . Nat Photon , 2012 . 6 ( 9 ): 591 - 595 . DOI:10.1038/nphoton.2012.190http://doi.org/10.1038/nphoton.2012.190.
Y H Zhou , C Fuentes-Hernandez , J Shim , J Meyer , A J Giordano , H Li , P Winget . Science , 2012 . 336 ( 6079 ): 327 - 332 . DOI:10.1126/science.1218829http://doi.org/10.1126/science.1218829.
Y M Sun , J H Seo , C J Takacs , J Seifter , A J Heeger . Adv Mater , 2011 . 23 ( 14 ): 1679 - 1684 . DOI:10.1002/adma.201004301http://doi.org/10.1002/adma.201004301.
M Abidi , S B Jabrallah , J P Corriou . Desalination , 2011 . 279 ( 1-3 ): 315 - 324 . DOI:10.1016/j.desal.2011.06.033http://doi.org/10.1016/j.desal.2011.06.033.
Z A Tan , W Q Zhang , Z G Zhang , D P Qian , Y Huang , J H Hou , Y F Li . Adv Mater , 2012 . 24 ( 11 ): 1476 - 1481 . DOI:10.1002/adma.201104863http://doi.org/10.1002/adma.201104863.
Z Y Liu , W Li , R X Peng , W G Jiang , Q Guan , T Lei , R J Yang . J Mater Chem A , 2017 . 5 ( 21 ): 10154 - 10160 . DOI:10.1039/C7TA02427Dhttp://doi.org/10.1039/C7TA02427D.
X H Ouyang , R X Peng , L Ai , X Y Zhang , Z Y Ge . Nat Photon , 2015 . 9 ( 8 ): 520 - 524 . DOI:10.1038/nphoton.2015.126http://doi.org/10.1038/nphoton.2015.126.
C H Duan , K Zhang , C M Zhong , F Huang , Y Cao . Chem Soc Rev , 2013 . 42 ( 23 ): 9071 - 9104 . DOI:10.1039/c3cs60200ahttp://doi.org/10.1039/c3cs60200a.
H Zheng , Y N Zheng , N L Liu , N Ai , Q Wang , S Wu , J H Zhou . Nat Commun , 2013 . 4 46 - 50 . http://www.ncbi.nlm.nih.gov/pubmed/23736123.
H Choi , H Cho , S Song , H Suh , S Park , J Y Kim . Phys Chem Chem Phys , 2010 . 12 ( 46 ): 15309 - 15314 . DOI:10.1039/c0cp01754jhttp://doi.org/10.1039/c0cp01754j.
B R Lee , H Choi , J SunPark , H J Lee , S O Kim , J Y Kim , M H Song . J Mater Chem , 2011 . 21 ( 7 ): 2051 - 2053 . DOI:10.1039/c0jm03688ahttp://doi.org/10.1039/c0jm03688a.
G H Kim , H B Kim , B Walker , H Choi , C Yang , J Park , J Y Kim . ACS Appl Mater Interfaces , 2013 . 5 ( 5 ): 1757 - 1760 . DOI:10.1021/am3029766http://doi.org/10.1021/am3029766.
H Brine , J F Sanchez-Royo , H J Bolink . Org Electron , 2013 . 14 ( 1 ): 164 - 168 . DOI:10.1016/j.orgel.2012.09.027http://doi.org/10.1016/j.orgel.2012.09.027.
L Q Huang , X F Cheng , J Yang , L F Zhang , W H Zhou , S Q Xiao , L C Tan . ACS Appl Mater Interfaces , 2016 . 8 ( 40 ): 27018 - 27025 . DOI:10.1021/acsami.6b09078http://doi.org/10.1021/acsami.6b09078.
P Fu , L Q Huang , W Yu , D Yang , G J Liu , L Y Zhou , J Zhang . Nano Energy , 2015 . 13 275 - 282 . http://www.sciencedirect.com/science/article/pii/S2211285515000919.
W Yu , L Huang , D Yang , P Fu , L Zhou , J Zhang , C Li . J Mater Chem A , 2015 . 3 ( 20 ): 10660 - 10665 . DOI:10.1039/C5TA00930Hhttp://doi.org/10.1039/C5TA00930H.
W Yu , L Y Zhou , S W Yu , P Fu , X Guo , C Li . Org Electron , 2017 . 42 387 - 392 . DOI:10.1016/j.orgel.2016.12.011http://doi.org/10.1016/j.orgel.2016.12.011.
J S Huang , G Li , Y Yang . Adv Mater , 2008 . 20 ( 3 ): 415 - 419 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
L Q Huang , L Chen , P R Huang , F Y Wu , L C Tan , S Q Xiao , W Zhong . Adv Mater , 2016 . 28 ( 24 ): 4852 - 4860 . DOI:10.1002/adma.v28.24http://doi.org/10.1002/adma.v28.24.