浏览全部资源
扫码关注微信
浙江大学高分子科学与工程学系 杭州 310027
Published:20 February 2018,
Received:1 September 2017,
Revised:27 September 2017,
扫 描 看 全 文
Jing-qi Xu, Wei-fei Fu, Shi-da Yang, Tang Liu, Chang-zhi Li, Hong-zheng Chen. Interface Engineering in Organic and Organic/Inorganic Hybrid Solar Cells. [J]. Acta Polymerica Sinica (2):164-173(2018)
Jing-qi Xu, Wei-fei Fu, Shi-da Yang, Tang Liu, Chang-zhi Li, Hong-zheng Chen. Interface Engineering in Organic and Organic/Inorganic Hybrid Solar Cells. [J]. Acta Polymerica Sinica (2):164-173(2018) DOI: 10.11777/j.issn1000-3304.2018.17251.
第3代可溶液加工的太阳电池(包括有机太阳电池、钙钛矿太阳电池等),因为制备成本低、可制备柔性器件等特点备受关注.它们的迅速发展与活性层材料、界面材料与修饰以及器件工程等方面的快速发展息息相关,其中器件中的各个界面对激子的分离、载流子传递和收集有着巨大的影响,影响着器件的性能.本文重点介绍了近年来我们课题组在有机太阳电池、聚合物/量子点杂化太阳电池以及钙钛矿太阳电池研究中,如何设计界面材料以及通过自组装层对电极进行界面修饰,实现活性层和电极之间的欧姆接触和载流子的有效收集;如何在界面层中引入具有等离激元效应的纳米粒子实现光场的有效利用和性能的提升;以及如何对聚合物和纳米粒子间的界面修饰实现载流子的高效分离,制备高性能的杂化太阳电池器件.
Third generation solar cells including organic solar cells
perovskite solar cells have attracted much attention due to their advantages of low cost
solution processability and flexibility. The rapid progress in this field is attributed to the development of absorbing layers
interfacial materials or interfacial modification
device architectures and so on. Especially
the interfaces in the devices significantly affect the exciton dissociation
charge carrier transport and collection
and subsequently affect the device performance. This review focuses on the interface engineering in organic solar cells
polymer/nanocrystal hybrid solar cells and perovskite solar cells in our group. We summarize the strategies of designing effective interfacial materials including hole-transporting materials
electron-transporting materials and their modification to achieve ohmic contact at the interface of active layer and electrodes. A series of low-temperature solution processed low-cost inorganic materials and organic small molecules are developed. With appropriate energy levels
high mobility and low defect or ability to passivate perovskites
highly efficient organic and perovskite solar cells are achieved. Self-assembly monolayer technologies are also discussed here. It is an efficient way to modify the work function of electrodes to obtain ohmic contact between electrodes and active layer. On one hand
the self-assembly monolayer can also be used to passivate the defect of metal oxide buffer layer such as ZnO or TiO
2
to reduce recombination
which may improve the morphology of perovskite film to enhance the performance. Plasmonic effect is introduced to enhance the light absorption of active layer by incorporating Au or Ag nanoparticles into the interface layers. At last
the optimized strategies for interface modification between polymer and nanocrystals to improve the exciton dissociation and charge transport are discussed in details. By attaching benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry
the nanocrystal-nanocrystal or polymer-nanocrystal distance is minimized. Furthermore
the "electroactive"
π
-orbitals of the benzenedithiol can further enhance the electronic coupling
which facilitates charge carrier dissociation and transport. On the other hand
judicious choice of ligands with appropriate molecular dipoles has a strong impact on chemical and electronic structures at the polymer-nanocrystal interface and subsequently on photovoltaic device performance. With these strategies
highly efficient polymer/CdSe nanocrystal hybrid solar cells have been achieved. A few viewpoints on further developing interface engineering for high-performance solar cells are also provided.
界面材料自组装层等离激元太阳电池
Interfacial materialsSelf-assembly monolayerPlasmonic effectSolar cell
W Zhao , S Li , H Yao , S Zhang , Y Zhang , B Yang , J Hou . J Am Chem Soc , 2017 . 139 ( 21 ): 7148 - 7151 . http://pubs.acs.org/doi/abs/10.1021/jacs.7b02677.
Y Cui , H Yao , B Gao , Y Qin , S Zhang , B Yang , C He , B Xu , J Hou . J Am Chem Soc , 2017 . 139 ( 21 ): 7302 - 7309 . http://www.ncbi.nlm.nih.gov/pubmed/28497691.
Shuixing Dai , Xiaowei Zhan . Acta Polymerica Sinica , 2017 . ( 11 ): 1706 - 1714 . http://www.gfzxb.org/CN/abstract/abstract14915.shtml.
代 水星 , 占 肖卫 . 高分子学报 , 2017 . ( 11 ): 1706 - 1714 . http://www.gfzxb.org/CN/abstract/abstract14915.shtml.
Haijun Bin , Yongfang Li . Acta Polymerica Sinica , 2017 . ( 9 ): 1444 - 1461 . http://www.gfzxb.org/CN/abstract/abstract14882.shtml.
宾 海军 , 李 永舫 . 高分子学报 , 2017 . ( 9 ): 1444 - 1461 . http://www.gfzxb.org/CN/abstract/abstract14882.shtml.
Huifeng Yao , Jianhui Hou . Acta Polymerica Sinica , 2016 . ( 11 ): 1468 - 1481 . http://www.gfzxb.org/CN/abstract/abstract14665.shtml.
姚 惠峰 , 侯 剑辉 . 高分子学报 , 2016 . ( 11 ): 1468 - 1481 . http://www.gfzxb.org/CN/abstract/abstract14665.shtml.
W S Yang , B W Park , E H Jung , N J Jeon , Y C Kim , D U Lee , S S Shin , J Seo , E K Kim , J H Noh , S I Seok . Science , 2017 . 356 ( 6345 ): 1376 - 1379 . DOI:10.1126/science.aan2301http://doi.org/10.1126/science.aan2301.
Zhisheng Yang , Ligong Yang , Gang Wu , Mang Wang , Hongzheng Chen . Acta Chimica Sinica , 2011 . 69 ( 6 ): 627 - 632 . http://www.cqvip.com/QK/91047X/201106/37232889.html.
杨 志胜 , 杨 立功 , 吴 刚 , 汪 茫 , 陈 红征 . 化学学报 , 2011 . 69 ( 6 ): 627 - 632 . http://www.cqvip.com/QK/91047X/201106/37232889.html.
Kai Zhang , Fei Huang , Yong Cao . Acta Polymerica Sinica , 2017 . ( 9 ): 1400 - 1414 . http://www.gfzxb.org/CN/abstract/abstract14827.shtml.
张 凯 , 黄 飞 , 曹 镛 . 高分子学报 , 2017 . ( 9 ): 1400 - 1414 . http://www.gfzxb.org/CN/abstract/abstract14827.shtml.
L Dou , J You , Z Hong , Z Xu , G Li , R A Street , Y Yang . Adv Mater , 2013 . 25 ( 46 ): 6642 - 6671 . DOI:10.1002/adma.v25.46http://doi.org/10.1002/adma.v25.46.
J R Tumbleston , B A Collins , L Q Yang , A C Stuart , E Gann , W Ma , W You , H Ade . Nat Photon , 2014 . 8 ( 5 ): 385 - 391 . DOI:10.1038/nphoton.2014.55http://doi.org/10.1038/nphoton.2014.55.
R Zhou , R Stalder , D Xie , W Cao , Y Zheng , Y Yang , M Plaisant , P H Holloway , K S Schanze , J R Reynolds , J Xue . ACS Nano , 2013 . 7 ( 6 ): 4846 - 4854 . DOI:10.1021/nn305823whttp://doi.org/10.1021/nn305823w.
Z He , C Zhong , S Su , M Xu , H Wu , Y Cao . Nat Photon , 2012 . 6 ( 9 ): 593 - 597.
Y Gao , H Y Yip , K S Chen , K M O'Malley , O Acton , Y Sun , G Ting , H Chen , A K Y Jen . Adv Mater , 2011 . 23 ( 16 ): 1903 - 1908 . DOI:10.1002/adma.v23.16http://doi.org/10.1002/adma.v23.16.
Y Gao , H L Yip , S K Hau , K M O'Malley , N C Cho , H Chen , A K Y Jen . Appl Phys Lett , 2010 . 97 ( 20 ): 203306 http://dx.doi.org/10.1063/1.3507388.
W Liu , X Yang , Y Zhang , M Xu , Z Chen . RSC Adv , 2014 . 4 ( 62 ): 32744 - 32748 . DOI:10.1039/C4RA04116Jhttp://doi.org/10.1039/C4RA04116J.
X Yang , W Liu , M Xiong , Y Zhang , T Liang , J Yang , M Xu , J Ye , H Chen . J Mater Chem A , 2014 . 2 ( 36 ): 14798 - 14806 . DOI:10.1039/C4TA03178Dhttp://doi.org/10.1039/C4TA03178D.
X Yang , W Fu , W Liu , J Hong , Y Cai , C Jin , M Xu , H Wang , D Yang , H Chen . J Mater Chem A , 2014 . 2 ( 21 ): 7727 - 7733 . DOI:10.1039/C4TA01336Khttp://doi.org/10.1039/C4TA01336K.
W Yang , Z Yu , W Liu , C Z Li , H Chen . J Polym Sci, Part A:Polym Chem , 2017 . 55 ( 4 ): 747 - 753 . DOI:10.1002/pola.28427http://doi.org/10.1002/pola.28427.
Z Yu , W Liu , W Fu , Z Zhang , W Yang , S Wang , H Li , M Xu , H Chen . J Mater Chem A , 2016 . 4 ( 14 ): 5130 - 5136 . DOI:10.1039/C6TA00909Chttp://doi.org/10.1039/C6TA00909C.
Z K Yu , W F Fu , W Q Liu , Z Q Zhang , Y J Liu , J L Yan , T Ye , W T Yang , H Y Li , H Z Chen . Chin Chem Lett , 2017 . 28 ( 1 ): 13 - 18 . DOI:10.1016/j.cclet.2016.06.021http://doi.org/10.1016/j.cclet.2016.06.021.
C Huang , W Fu , C Z Li , Z Zhang , W Qiu , M Shi , P Heremans , A K Jen , H Chen . J Am Chem Soc , 2016 . 138 ( 8 ): 2528 - 2531 . http://www.ncbi.nlm.nih.gov/pubmed/26876042.
J Wang , K Liu , L Ma , X Zhan . Chem Rev , 2016 . 116 ( 23 ): 14675 - 14725 . DOI:10.1021/acs.chemrev.6b00432http://doi.org/10.1021/acs.chemrev.6b00432.
P Agarwala , D Kabra . J Mater Chem A , 2017 . 5 ( 4 ): 1348 - 1373 . DOI:10.1039/C6TA08449Dhttp://doi.org/10.1039/C6TA08449D.
H Chen , W Fu , C Huang , Z Zhang , S Li , F Ding , M Shi , C Z Li , A K Y Jen , H Chen . Adv Energ Mater , 2017 . 1700012 http://onlinelibrary.wiley.com/doi/10.1002/aenm.201700012/full.
L Zuo , S Zhang , S Dai , H Chen . RSC Adv , 2015 . 5 ( 61 ): 49369 - 49375 . http://dx.doi.org/10.1039/C5RA08441E.
W Liu , T Liang , Q Chen , Z Yu , Y Zhang , Y Liu , W Fu , F Tang , L Chen , H Chen . ACS Appl Mater Interfaces , 2016 . 8 ( 14 ): 9254 - 9261 . DOI:10.1021/acsami.6b00327http://doi.org/10.1021/acsami.6b00327.
C Z Li , C C Chueh , F Ding , H L Yip , P W Liang , X Li , A K Y Jen . Adv Mater , 2013 . 25 ( 32 ): 4425 - 4430 . DOI:10.1002/adma.v25.32http://doi.org/10.1002/adma.v25.32.
C Z Li , P W Liang , D B Sulas , P D Nguyen , X Li , D S Ginger , C W Schlenker , A K Y Jen . Mater Horiz , 2015 . 2 ( 4 ): 414 - 419 . DOI:10.1039/C5MH00026Bhttp://doi.org/10.1039/C5MH00026B.
L Wang , W Fu , Z Gu , C Fan , X Yang , H Li , H Chen . J Mater Chem C , 2014 . 2 ( 43 ): 9087 - 9090 . DOI:10.1039/C4TC01875Chttp://doi.org/10.1039/C4TC01875C.
Z Gu , F Chen , X Zhang , Y Liu , C Fan , G Wu , H Li , H Chen . Sol Energ Mater Sol Cells , 2015 . 140 396 - 404 . DOI:10.1016/j.solmat.2015.04.015http://doi.org/10.1016/j.solmat.2015.04.015.
Z Zhu , J Q Xu , C C Chueh , H Liu , Z A Li , X Li , H Chen , A K Y Jen . Adv Mater , 2016 . 28 ( 48 ): 10786 - 10793 . DOI:10.1002/adma.201601745http://doi.org/10.1002/adma.201601745.
D Zhao , Z Zhu , M Y Kuo , C C Chueh , A K Y Jen . Angew Chem Int Ed , 2016 . 55 ( 31 ): 8999 - 9003 . http://www.ncbi.nlm.nih.gov/pubmed/27273656.
D M Alloway , M Hofmann , D L Smith , N E Gruhn , A L Graham , R Colorado , V H Wysocki , T R Lee , P A Lee , N R Armstrong . J Phys Chem B , 2003 . 107 ( 42 ): 11690 - 11699 . DOI:10.1021/jp034665+http://doi.org/10.1021/jp034665+.
D M Alloway , A L Graham , X Yang , A Mudalige , R Colorado , V H Wysocki , J E Pemberton , T R Lee , R J Wysocki , N R Armstrong . J Phys Chem C , 2009 . 113 ( 47 ): 20328 - 20334.
C K Song , A C White , L Zeng , B J Leever , M D Clark , J D Emery , S J Lou , A Timalsina , L X Chen , M J Bedzyk , T J Marks . ACS Appl Mater Interfaces , 2013 . 5 ( 18 ): 9224 - 9240 . DOI:10.1021/am4030609http://doi.org/10.1021/am4030609.
C Ganzorig , K J Kwak , K Yagi , M Fujihira . Appl Phys Lett , 2001 . 79 ( 2 ): 272 - 274 . DOI:10.1063/1.1384896http://doi.org/10.1063/1.1384896.
P B Paramonov , S A Paniagua , P J Hotchkiss , S C Jones , N R Armstrong , S R Marder , J L Brédas . Chem Mater , 2008 . 20 ( 16 ): 5131 - 5133 . DOI:10.1021/cm8014622http://doi.org/10.1021/cm8014622.
P J Hotchkiss , H Li , P B Paramonov , S A Paniagua , S C Jones , N R Armstrong , J L Brédas , S R Marder . Adv Mater , 2009 . 21 ( 44 ): 4496 - 4501 . http://dx.doi.org/10.1002/adma.200900502.
Z Gu , L Zuo , T T Larsen-Olsen , T Ye , G Wu , F C Krebs , H Chen . J Mater Chem A , 2015 . 3 ( 48 ): 24254 - 24260 . http://dx.doi.org/10.1039/C5TA07008B.
L Zuo , Z Gu , T Ye , W Fu , G Wu , H Li , H Chen . J Am Chem Soc , 2015 . 137 ( 7 ): 2674 - 2679 . DOI:10.1021/ja512518rhttp://doi.org/10.1021/ja512518r.
C Z Li , J Huang , H Ju , Y Zang , J Zhang , J Zhu , H Chen , A K Y Jen . Adv Mater , 2016 . 28 ( 33 ): 7269 - 7275 . DOI:10.1002/adma.201601161http://doi.org/10.1002/adma.201601161.
J Huang , X Zhang , D Zheng , K Yan , C Z Li , J Yu . Sol RRL , 2017 . 1 ( 1 ): 1600008 DOI:10.1002/solr.201600008http://doi.org/10.1002/solr.201600008.
J Huang , H Wang , K Yan , X Zhang , H Chen , C Z Li , J Yu . Adv Mater , 2017 . 29 ( 19 ): 1606729 DOI:10.1002/adma.v29.19http://doi.org/10.1002/adma.v29.19.
X Yang , W Liu , H Chen . Sci China Chem , 2015 . 58 ( 2 ): 210 DOI:10.1007/s11426-014-5219-3http://doi.org/10.1007/s11426-014-5219-3.
X Chen , X Yang , W Fu , M Xu , H Chen . Mater Sci Eng:B , 2013 . 178 ( 1 ): 53 - 59 . DOI:10.1016/j.mseb.2012.10.024http://doi.org/10.1016/j.mseb.2012.10.024.
W F Fu , X Chen , X Yang , L Wang , Y Shi , M Shi , H Y Li , A K Y Jen , J W Chen , Y Cao , H Z Chen . Phys Chem Chem Phys , 2013 . 15 ( 40 ): 17105 - 17111 . DOI:10.1039/c3cp52723ahttp://doi.org/10.1039/c3cp52723a.
A Singh , A Dey , D Das , P K Iyer . J Mater Chem C , 2017 . 5 ( 26 ): 6578 - 6587 . DOI:10.1039/C7TC01621Bhttp://doi.org/10.1039/C7TC01621B.
Q Li , F Wang , Y Bai , L Xu , Y Yang , L Yan , S Hu , B Zhang , S Dai , Z A Tan . Org Electron , 2017 . 43 33 - 40 . DOI:10.1016/j.orgel.2017.01.010http://doi.org/10.1016/j.orgel.2017.01.010.
D D S Fung , L Qiao , W C H Choy , C Wang , W E I Sha , F Xie , S He . J Mater Chem , 2011 . 21 ( 41 ): 16349 - 16356 . http://dx.doi.org/10.1039/c1jm12820e.
X Yang , C C Chueh , C Z Li , H L Yip , P Yin , H Chen , W C Chen , A K Y Jen . Adv Energy Mater , 2013 . 3 ( 5 ): 666 - 673 . DOI:10.1002/aenm.v3.5http://doi.org/10.1002/aenm.v3.5.
Y Gao , F Jin , Z Su , H Zhao , Y Luo , B Chu , W Li . Org Electron , 2017 . 48 336 - 341 . DOI:10.1016/j.orgel.2017.06.003http://doi.org/10.1016/j.orgel.2017.06.003.
C Deibel , T Strobel , V Dyakonov . Adv Mater , 2010 . 22 ( 37 ): 4097 - 4111 . DOI:10.1002/adma.v22:37http://doi.org/10.1002/adma.v22:37.
J R Tumbleston , B A Collins , L Yang , A C Stuart , E Gann , W Ma , W You , H Ade . Nat Photon , 2014 . 8 ( 5 ): 385 - 391 . DOI:10.1038/nphoton.2014.55http://doi.org/10.1038/nphoton.2014.55.
W Fu , Y Shi , W Qiu , L Wang , Y Nan , M Shi , H Li , H Chen . Phys Chem Chem Phys , 2012 . 14 ( 35 ): 12094 - 12098 . http://dx.doi.org/10.1039/c2cp42487h.
W Fu , L Wang , Y Zhang , R Ma , L Zuo , J Mai , T K Lau , S Du , X Lu , M Shi , H Li , H Chen . ACS Appl Mater Interfaces , 2014 . 6 ( 21 ): 19154 - 19160.
W Fu , L Wang , J Ling , H Li , M Shi , J Xue , H Chen . Nanoscale , 2014 . 6 ( 18 ): 10545 - 10550 . DOI:10.1039/C4NR02339Khttp://doi.org/10.1039/C4NR02339K.
0
Views
37
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution