浏览全部资源
扫码关注微信
鲁东大学化学与材料科学学院 烟台 264025
Published:2018-7,
Received:10 December 2017,
扫 描 看 全 文
Xin-hua Jia, Rong-jun Qu, Chang-mei Sun, Kai An, Rao Fu, Ying-lei Mu. Preparation and Properties of Multiwalled Carbon Nanotubes Modified by Oligo(para-phenylene terephthanlamide). [J]. Acta Polymerica Sinica 0(7):878-885(2018)
Xin-hua Jia, Rong-jun Qu, Chang-mei Sun, Kai An, Rao Fu, Ying-lei Mu. Preparation and Properties of Multiwalled Carbon Nanotubes Modified by Oligo(para-phenylene terephthanlamide). [J]. Acta Polymerica Sinica 0(7):878-885(2018) DOI: 10.11777/j.issn1000-3304.2018.17327.
为改善多壁碳纳米管的表面性能及分散性能,将低聚的氨基为端基的低分子量的对位芳纶(PPTA)与羧基碳纳米管(MWCNTs-COOH)反应,制备了低聚PPTA化学修饰的多壁碳纳米管PPTA-MWCNTs-
x
,并对其结构进行了表征. 研究结果表明,与MWCNTs-COOH相比,PPTA-MWCNTs-
x
在二甲基亚砜(DMSO)、氮甲基吡咯烷酮(NMP)、乙醇等有机溶剂中具有更好的稳定性和分散性,其稳定时间可分别长达216和240 h. 本文以廉价的聚氯乙烯(PVC)为样板聚合物,采用浇铸法制备了碳纳米管/聚合物复合材料,比较了改性前后多壁碳纳米管对PVC薄膜力学性能的影响,并探讨了其增强机理. 结果显示,与纯PVC薄膜相比,当PPTA-MWCNTs-
x
添加量为0.25 wt%时,可使PVC复合膜的杨氏模量和拉伸强度分别提高44.4%和79.4%;当PPTA-MWCNTs-
x
添加量为0.05 wt%时,可使PVC复合膜断裂应变提高203.6%.
Carbon nanotubes have excellent mechanical properties. However
their application in polymer composites is limited due to their easy aggregation and inert surface. In order to improve their dispersion and surface performance
multiwalled carbon nanotubes (MWCNTs)
chemically modified using oligo(para-phenylene terephthanlamide) and denoted as PPTA-MWCNTs-
x
were prepared
and used to investigate the reinforcement of the mechanical properties of poly(vinyl chloride) (PVC) composite films. PPTA-MWCNTs-
x
was obtained by the reaction of carboxymethyl multiwalled carbon nanotubes (MWCNTs-COOH) with amino-terminal para-phenylene terephthanlamide oligomers (PPTA). A typical procedure is as follows: firstly
a desired amount of MWCNTs-COOH was suspended in
N
-methyl methyl pyrrolidone (NMP)
and the suspension was sonicated to form a homogenous dark-brown solution. In a separated experiment
amino-terminal PPTA oligomer was prepared by reacting PDA with TPC at a ratio of 1.5 to 1 in NMP. The above MWCNTs-COOH dispersion was poured into the PPTA solution just prepared
and the mixture was stirred at desired temperature for a given time in the presence of catalyst of
N
N
-dicyclohexylcarbodiimde under nitrogen atmosphere. The solid substance obtained was filtered and the product PPTA-MWCNTs-
x
was obtained. Transmission electron microscopy (TEM)
scanning electron microscope (SEM)
and Fourier transform infrared spectrometer (FTIR) were used to characterize the structure and the morphology of PPTA-MWCNTs-
x
. The results of FTIR analysis demonstrated that PPTA oligomers were successfully grafted on the surface of PPTA-MWCNTs-
x
. The dispersion stability of PPTA-MWCNTs-
x
in some solvents
such as NMP
dimethyl formamide (DMF)
dimethyl sulfoxide (DMSO) and ethanol
was investigated. The results showed that the stability of PPTA-MWCNTs-
x
in DMF and DMSO was higher than that in NMP and ethanol
and the time
that the dispersion remained stable without phase separation
could reach 216 and 240 h
respectively. PVC was chosen as model polymer to investigate the reinforcement effect of PPTA-MWCNTs-
x
. PVC composite films were prepared by solvent casting using DMF as solvent. Optical microscope images showed that PPTA-MWCNTs-
x
was more homogeneously dispersed than MWCNTs-COOH in the composite films. The reinforcement results demonstrated that the maximum Young’s modulus
strength and strain of PPTA-MWCNTs-
x
/PVC composite films increased by 44.4%
79.4%
and 203.6%
respectively
in comparison to those values from pure PVC films
while those of MWCNTs-COOH/PVC composite films increased by 29.7%
41.6%
and 104.2%
respectively. Obviously
the MWCNTs modified by oligo-PPTA can significantly improve the mechanical properties of PVC composite films. Based on the observations
PPTA-MWCNTs-
x
has great potential to be used as reinforcing polymer filler in the future.
多壁碳纳米管低聚对苯二甲酰对苯二胺化学修饰PVC复合材料
Multiwalled carbon nanotubesOligo-(p-phenylene terephthalamide)Chemical modificationPVC composites
Samareh J A, Siochi E J . Nanotechnology , . 2017 . 28 ( 37 ): 372001 DOI:10.1088/1361-6528/aa7c5ahttp://doi.org/10.1088/1361-6528/aa7c5a .
Schilde C, Schlömann M, Overbeck A, Linke S, Kwade A . Compos Sci Technol , . 2015 . 117 183 - 190 . DOI:10.1016/j.compscitech.2015.06.013http://doi.org/10.1016/j.compscitech.2015.06.013 .
Kausar A, Rafique I, Muhammad B . J Macromol Sci, Part D: Rev Polym Process , . 2016 . 55 ( 11 ): 1167 - 1191.
Salama E I, Abbas A, Esawi A M K . Composites Part A , . 2017 . 99 84 - 93 . DOI:10.1016/j.compositesa.2017.04.002http://doi.org/10.1016/j.compositesa.2017.04.002 .
Qian D, Dickey E C, Andrews R, Rantell T . Appl Phys Lett , . 2000 . 76 ( 20 ): 2868 - 2870 . DOI:10.1063/1.126500http://doi.org/10.1063/1.126500 .
Tianxi Liu, Phang I Y, Lu S, S Y C, Zhang W D . Macromolecular , . 2004 . 37 ( 19 ): 7214 - 7222 . DOI:10.1021/ma049132thttp://doi.org/10.1021/ma049132t .
Alexander Star, Liu Y, Grant K, Ridvan L, Stoddart J F, Steuerman D W . Macromolecular , . 2016 . 36 ( 36 ): 553 - 560.
Gupta V K, Moradi O, Tyagi I, Agarwal S, Sadegh H . Crit Rev Env Sci Technol , . 2016 . 46 ( 2 ): 93 - 118 . DOI:10.1080/10643389.2015.1061874http://doi.org/10.1080/10643389.2015.1061874 .
Khan M U, Reddy K R, Snguanwongchai T, Haque E, Gomes V G . Colloid Polym Sci , . 2016 . 294 ( 10 ): 1599 - 1610 . DOI:10.1007/s00396-016-3922-7http://doi.org/10.1007/s00396-016-3922-7 .
Wang N, Pandit S, Ye L, Edwards M, Mokkapati V R S S, Murugesan M, Liu J . Carbon , . 2017 . 111 402 - 410 . DOI:10.1016/j.carbon.2016.10.027http://doi.org/10.1016/j.carbon.2016.10.027 .
Yang J Y, Jiang X Y, Jiao F P, Yu J G . Appl Surf Sci , . 2018 . 436 198 - 206 . DOI:10.1016/j.apsusc.2017.12.029http://doi.org/10.1016/j.apsusc.2017.12.029 .
Pan F, Qu R, Jia X, Sun C, Sun H, An K, Mu Y, Ji C, Yin P, Zhang Y . Appl Surf Sci , . 2017 . 416 225 - 233 . DOI:10.1016/j.apsusc.2017.04.163http://doi.org/10.1016/j.apsusc.2017.04.163 .
Downing J W, Newell J A . J Appl Polym Sci , . 2004 . 91 ( 1 ): 417 - 424 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Alwis K G N C, Burgoyne C J . Appl Compos Mater , . 2006 . 13 ( 4 ): 249 - 264 . DOI:10.1007/s10443-006-9017-8http://doi.org/10.1007/s10443-006-9017-8 .
O′Connor I, Hayden H, O′Connor S, Coleman J N, Gun’Ko Y K . J Mater Chem , . 2008 . 18 ( 46 ): 5585 - 5588 . DOI:10.1039/b813143khttp://doi.org/10.1039/b813143k .
Fan J C, Wang J L, Shi Z X, Yu S, Yin J . Mater Chem Phys , . 2013 . 141 ( 2-3 ): 861 - 868 . DOI:10.1016/j.matchemphys.2013.06.015http://doi.org/10.1016/j.matchemphys.2013.06.015 .
Sainsbury T, Erickson K, Okawa D, Zonte C S, Fréchet J M J, Zettl A . Chem Mater , . 2010 . 22 ( 6 ): 2164 - 2171 . DOI:10.1021/cm902987khttp://doi.org/10.1021/cm902987k .
Wang Y, Shi Z X, Yin J . Polymer , . 2011 . 52 ( 16 ): 3661 - 3670 . DOI:10.1016/j.polymer.2011.06.012http://doi.org/10.1016/j.polymer.2011.06.012 .
Gómez S, Rendtorff N M, Aglietti E F, Sakka Y, Suárez G . Appl Surf Sci , . 2016 . 379 264 - 269 . DOI:10.1016/j.apsusc.2016.04.065http://doi.org/10.1016/j.apsusc.2016.04.065 .
0
Views
14
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution