浏览全部资源
扫码关注微信
1.南开大学化学学院 功能高分子材料教育部重点实验室 天津 300071
2.天津化学化工协同创新中心 天津 300071
Published:2018-7,
Received:8 January 2018,
Revised:29 March 2018,
扫 描 看 全 文
Yun-xiao Huang, Hu-sheng Yan. Effect of Buffer Types and Their Concentrations on
Yun-xiao Huang, Hu-sheng Yan. Effect of Buffer Types and Their Concentrations on
研究了测定介质缓冲液的组成和浓度对3种含氨基纳米粒子的
ζ
电位的影响,这3种纳米粒子是聚酰胺-胺树状大分子(PAMAM)、苯乙烯与甲基丙烯酸-
N
N
-二甲基氨基乙基酯二嵌段共聚物(PS-
b
-PDMAEMA)胶束和壳聚糖纳米粒子. 在相同的pH值下,3种纳米粒子在三(羟甲基)氨基甲烷盐酸盐(Tris)、
N
-(2-羟乙基)哌嗪-
N
′-2-乙烷磺酸(Hepes)、3-(
N
-吗啡啉)丙磺酸(Mops)和磷酸盐缓冲液中的
ζ
电位依次降低,在磷酸盐缓冲液中的
ζ
电位比在其他几种缓冲液中的都低很多. 带有氨基的壳聚糖纳米粒子在浓度
>
~10 mmol/L磷酸盐缓冲液(pH = 7.4)中的
ζ
电位甚至是负值. 随着缓冲剂浓度的增加(从2 mmol/L到100 mmol/L) 3种纳米粒子的
ζ
电位都显著降低,在磷酸盐缓冲液(pH = 7.4)中随着缓冲剂浓度的增加,壳聚糖纳米粒子的
ζ
电位由正转负,转变点的磷酸盐的浓度为 ~ 10 mmol/L. 这一由正转负的现象可以归因于壳聚糖中氨基(p
K
a
= 6.3)在pH = 7.4下的低的质子化作用和存在三价的磷酸根负离子,三价磷酸根负离子牢固地结合于带正电荷的纳米粒子上,掩蔽了粒子的正电荷. 还研究了不同缓冲液的pH值和离子强度对
ζ
电位的影响.
The application of charged nanoparticles in drug delivery and imaging has been extensively investigated. The surface charge density of charged nanoparticles
which is usually characterized by
ζ
potentials
has a drastic effect on the interaction between the nanoparticles and the biological systems
and this interaction is critical for the
in vivo
biofate of the nanoparticles. However
the effect of different types of buffer systems and their concentrations on the
ζ
potentials is often ignored in literature. Various buffer systems
such as phosphate
Tris
Hepes and Mops
and different buffer concentrations from 1 mmol/L to 200 mmol/L
were used for measuring
ζ
potentials of nanoparticles. Herein the effect of buffer types and their concentrations on the
ζ
potentials for three different types of amine group-containing nanoparticles
i.e.
poly(amido amine) (PAMAM) dendrimer
polystyrene-block-poly((
N
N
-diethylamino)ethyl methacrylate) (PS-
b
-PDMAEMA) micelles and chitosan nanoparticles
was studied. The
ζ
potentials of all the three types of nanoparticles decreased in the order of Tris
Hepes
Mops
and phosphates for buffer systems at the same concentration and pH. The
ζ
potentials were much lower in phosphate buffer than that in the others. The
ζ
potentials of amino group-containing chitosan nanoparticles showed even negative values in phosphate buffer with the concentration below ~ 10 mmol/L at pH = 7.4. The
ζ
potentials of all the three types of nanoparticles drastically decreased with the increase in buffer concentration (from 2 mmol/L to 100 mmol/L) for all the buffer systems investigated. The
ζ
potentials of chitosan nanoparticles in phosphate buffer (pH = 7.4) were reversed from positive to negative with the increase in phosphate concentration
with the crossover concentration of around 10 mmol/L. This charge reversal was contributed to the low protonation degree of chitosan amino groups (p
K
a
= 6.3) at pH = 7.4
and the presence of trivalent phosphate anions
which should be strongly adsorbed onto the positively charged particle surfaces and subsequently shielded the positive charges. When NaCl was added in the buffers
the
ζ
potentials of all the three types of nanoparticles decreased with increasing concentrations of the salt.
生物材料药物传输ζ电位带正电荷纳米粒子
BiomaterialsDrug deliveryζ PotentialPositively charged nanoparticles
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J . J Control Release , . 2015 . 200 138 - 157.
Pearson R M, Hsu H J, Bugno J, Hong S . MRS Bull , . 2014 . 39 227 - 237.
Fleischer C C, Payne C K . Acc Chem Res , . 2014 . 47 2651 - 2659.
Duncan R . Nat Rev Cancer , . 2006 . 6 688 - 701.
Fröhlich E . Int J Nanomed , . 2012 . 7 5577 - 5591.
Park J, Nam J, Won N, Jin H, Jung S, Jung S, Cho S H, Kim S . Adv Funct Mater , . 2011 . 21 1558 - 1566.
Amoozgar Z, Park J, Lin Q, Yeo Y . Mol Pharmaceut , . 2012 . 9 1262 - 1270.
Roser M, Fischer D, Kissel T . Eur J Pharm Biopharm , . 1998 . 46 255 - 263.
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson K A . Proc Natl Acad Sci USA , . 2008 . 105 14265 - 14270.
Ju C, Mo R, Xue J, Zhang L, Zhao Z, Xue L, Ping Q, Zhang C . Angew Chem Int Ed , . 2014 . 53 6253 - 6258.
Guo J, Ping Q, Jiang G, Huang L, Tong Y . Int J Pharm , . 2003 . 260 167 - 173.
Zhou Z, Ma X, Murphy C J, Jin E, Sun Q, Shen Y, Van Kirk E A, Murdoch W J . Angew Chem Int Ed , . 2014 . 53 10949 - 10955.
Oh N M, Oh K T, Lee E S . Colloid Surface B , . 2014 . 19 14 - 21.
Wu W, Wang J, Lin Z, Li X, Li J . Macromol Rapid Commun , . 2014 . 35 1679 - 1684.
Kaur R, Henriksen-Lacey M, Wilkhu J, Devitt A, Christensen D, Perrie Y . Mol Pharmaceut , . 2014 . 11 197 - 207.
Qian R, Ding L, Ju H . J Am Chem Soc , . 2013 . 135 13282 - 13285.
Sarker S R, Hokama R, Takeoka S . Mol Pharmaceut , . 2014 . 11 164 - 174.
Zhu C, Zheng M, Meng F, Mickler F M, Ruthardt N, Zhu X, Zhong Z . Biomacromolecules , . 2012 . 13 769 - 778.
Tang M X, Szoka F C . Gene Therapy , . 1997 . 4 823 - 832.
Ladewig K, Xu Z P, Gray P, Lu G Q . J Biomed Mater Res Part A , . 2014 . 102 2137 - 2146.
Zhang S, Zhou K, Huang G, Takahashi M, Sherry A D, Gao J . Chem Commun , . 2013 . 49 6418 - 6420.
Tseng S J, Liao Z X, Kao S H, Zeng Y F, Huang K Y, Li H J, Yang C L, Deng Y F, Huang C F, Yang S C, Yang P C, Kempson I M . Nat Commun , . 2015 . 6 6456 .
Li L, Raghupathi K, Yuan C, Thayumanavan S . Chem Sci , . 2013 . 4 3654 - 3660.
Bigall N C, Curcio A, Leal M P, Falqui A, Palumberi D, Corato R D, Albanesi E, Cingolani R, Pellegrino T . Adv Mater , . 2011 . 23 5645 - 5650.
Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P, Li F . J Am Chem Soc , . 2013 . 135 5029 - 5037.
Mahmoud K A, Mena J A, Male K B, Hrapovic S, Kamen A, Luong J H T . ACS Appl Mater Interfaces , . 2010 . 2 2924 - 2932.
Mostaghaci B, Loretz B, Haberkorn R, Kickelbick G, Lehr C M . Chem Mater , . 2013 . 25 3667 - 3674.
Park J, Nam J, Won N, Jin H, Jung S, Jung S, Cho S H, Kim S . Adv Funct Mater , . 2011 . 21 1558 - 1566.
Guo L, Wang C, Yang C, Wang X, Zhang T, Zhang Z, Yan H, Liu K . Polymer , . 2016 . 84 189 - 197.
Chorom M, Rengasamy P . Eur J Soil Sci , . 1995 . 46 657 - 665.
Tomalia D A, Naylor A M, Goddard W A . Angew Chem Int Ed , . 1990 . 29 138 - 175.
Su Y L, Li C . J Colloid Interf Sci , . 2007 . 316 344 - 349.
Bhattarai N, Gunn J, Zhang M . Adv Drug Deliv Rev , . 2010 . 62 83 - 99.
Du J Z, Sun T M, Song W J, Wu J, Wang J . Angew Chem Int Ed , . 2010 . 49 3621 - 3626.
Zhang Y, Wang C, Xu C, Yang C, Zhang Z, Yan H, Liu K . Chem Commun , . 2013 . 49 7286 - 7288.
Chen W, Achazi K, Schade B, Haag R . J Control Release , . 2015 . 205 15 - 24.
Lu J, Jia H, Guo L, Zhang G, Cao Y, Yan H, Liu K . Eur Polym J , . 2015 . 66 376 - 385.
0
Views
23
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution