浏览全部资源
扫码关注微信
1.功能高分子材料教育部重点实验室 南开大学化学学院 天津 300071
2.天津理工大学材料科学与工程学院 天津 300384
Published:2018-8,
Received:8 January 2018,
Revised:28 February 2018,
扫 描 看 全 文
Yuan-yuan Ju, Guang-da Han, Yan Lu, Han-ying Zhao. Fabrication of Mesoporous Polymeric Micelles and Their Application in Hg2+ Detection. [J]. Acta Polymerica Sinica 0(8):1081-1088(2018)
Yuan-yuan Ju, Guang-da Han, Yan Lu, Han-ying Zhao. Fabrication of Mesoporous Polymeric Micelles and Their Application in Hg2+ Detection. [J]. Acta Polymerica Sinica 0(8):1081-1088(2018) DOI: 10.11777/j.issn1000-3304.2018.18009.
通过可逆加成-断裂链转移聚合(RAFT)和原子转移自由基聚合(ATRP)设计合成了具有pH响应性和还原响应性的双亲性聚合物分子刷,聚聚(乙二醇)单甲醚甲基丙烯酸酯-block-(聚甲基丙烯酸叔丁酯-graft-聚甲基丙烯酸
N
N
-二甲氨基乙酯) (POEGMA-
b
-(P
t
BMA-g-PDMAEMA)),其中侧链PDMAEMA与主链通过二硫键相连. 运用核磁共振氢谱(
1
H-NMR)和凝胶渗透色谱(GPC)表征了聚合物的结构、分子量及分子量分布. 在碱性条件下,聚合物分子刷自组装成以POEGMA为壳,P
t
BMA和PDMAEMA为核的多组分胶束. 由于P
t
BMA和PDMAEMA互不相容,在核中形成微相分离,体积分数较大的P
t
BMA形成连续相,体积分数较小的PDMAEMA形成分散相. 调节pH至酸性条件后,分散相PDMAEMA由坍陷变为伸展状态,从胶束的核中溶解出来. 加入还原剂断开侧链PDMAEMA与主链相连的二硫键,制得孔内壁含有巯基的介孔核结构聚合物胶束. 利用透射电镜(TEM)和动态光散射(DLS)表征了胶束的形貌和粒径. 通过TEM结果得出介孔核结构聚合物胶束的孔径大小约为2 nm. 利用巯基对氯金酸的还原作用和对金纳米粒子的稳定作用,制得孔内修饰金纳米粒子的介孔核结构聚合物胶束. 利用巯基和溴的点击反应,制得孔内修饰聚噻吩衍生物的介孔核结构聚合物胶束,其对Hg
2+
检测表现出较高的灵敏度和特异性.
Amphiphilic macromolecular brushes with pH-responsiveness and reduction responsiveness were synthesized by reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization. The side chains of the brush polymers were covalently connected to the backbones through redox-responsive disulfide bonds. The structure
molecular weight and molecular weight distribution of the brush polymers were characterized by
1
H-NMR and gel permeation chromatography. At pH = 10.0
the amphiphilic brush polymers self-assembled into multi-component micelles with POEGMA shells and PtBMA/PDMAEMA cores. In the cores
the two hydrophobic blocks segregated into distinct domains due to their incompatibility
and the hydrophilic POEGMA blocks formed the coronae to stabilize the structures. The PtBMA chains with larger volume percentage formed the continuous phases
while the PDMAEMA chains with smaller volume percentage formed the discontinuous phases. At pH = 4.0
protonated PDMAEMA chains were highly stretched and formed the coronae of the micelles. Excessive reductant was added into the micellar solution to reduce the disulfide bonds between PDMAEMA side chains and the backbones
and mesoporous polymeric micelles with thiol groups inside the pores were obtained.
1
H-NMR results of multi-component micelles
before and after treatment with the reductant
indicated that the PDMAEMA side chains were removed completely. Transmission electron microscopy (TEM) and dynamic light scattering were used to characterize the morphology and the size of the micelles. Based on TEM results
the average size of the pores in the micelles was about 2 nm
which was consistent with the average size of the PDMAEMA discontinuous phases. After the cleavage of the disulfide bonds and the removal of PDMAEMA chains from the micelles
thiol groups were produced on the walls of the pores. The thiol groups can be used as reducing agent and stabilizer in the
in situ
synthesis of gold nanoparticles. By thiol-bromine reactions
mesoporous micelles with polythiophene derivatives inside the pores were synthesized. The micelles showed high sensitivity and excellent selectivity for Hg
2+
.
多分组胶束介孔核结构聚合物胶束巯基化学Hg2+检测
Multicomponent micelleMesoporous micellesThiol-bromo reactionHg2+ Detection
Laschewsky A . Curr Opin Colloid Interface Sci , . 2003 . 8 274 - 281 . DOI:10.1016/S1359-0294(03)00049-9http://doi.org/10.1016/S1359-0294(03)00049-9 .
Uchman M, Štěpánek M, Procházka K, Mountrichas G, Pispas S, Voets I K, Walther A . Macromolecules , . 2009 . 42 5605 - 5613 . DOI:10.1021/ma9008115http://doi.org/10.1021/ma9008115 .
Fustin C A, Abetz V, Gohy J F . Eur Phys J E , . 2005 . 16 291 - 302 . DOI:10.1140/epje/i2004-10086-0http://doi.org/10.1140/epje/i2004-10086-0 .
Collier J H, Messersmith P B . Annu Rev Mater Res , . 2001 . 31 237 - 263 . DOI:10.1146/annurev.matsci.31.1.237http://doi.org/10.1146/annurev.matsci.31.1.237 .
Li Z, Kesselman E, Talmon Y, Hillmyer1 M A, Lodge1 T P . Science , . 2004 . 306 98 - 101 . DOI:10.1126/science.1103350http://doi.org/10.1126/science.1103350 .
Park M, Harrison C, Chaikin P M, Register R A, Adamson D H. Science, 276: 1401-1404
Lutz J F, Laschewsky A . Macromol Chem Phys , . 2005 . 206 813 - 817 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935 .
Kubowicz S, Baussard J F, Lutz J F, Thünemann A F, von Berlepsch H, Laschewsky A . Angew Chem Int Ed , . 2005 . 44 5262 - 5265 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Weberskirch R, Preuschen J, Spiess H W, Nuyken O . Macromol Chem Phys , . 2000 . 201 995 - 1007 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935 .
Kotzev A, Laschewsky A, Adriaensens P, Gelan J . Macromolecules , . 2002 . 35 1091 - 1101 . DOI:10.1021/ma011047nhttp://doi.org/10.1021/ma011047n .
Stähler K, Selb J, Candau F . Langmuir , . 1999 . 15 7565 - 7576 . DOI:10.1021/la990431zhttp://doi.org/10.1021/la990431z .
Kotzev A, Laschewsky A, Rakotoaly R H . Macromol Chem Phys , . 2001 . 202 3257 - 3267 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935 .
Walther A, Müller A H . Chem Commun , . 2009 . 9 1127 - 1129.
Li Z, Hillmyer M A, Lodge T P . Langmuir , . 2006 . 22 9409 - 9417 . DOI:10.1021/la0620051http://doi.org/10.1021/la0620051 .
Mao J, Ni P, Mai Y, Yan D . Langmuir , . 2007 . 23 5127 - 5134 . DOI:10.1021/la063576whttp://doi.org/10.1021/la063576w .
Liu C, Hillmyer M A, Lodge T P . Langmuir , . 2009 . 25 13718 - 13725 . DOI:10.1021/la900845uhttp://doi.org/10.1021/la900845u .
Saito N, Liu C, Lodge T P, Hillmyer M A . ACS Nano , . 2010 . 4 1907 - 1912 . DOI:10.1021/nn9016873http://doi.org/10.1021/nn9016873 .
Li Z, Hillmyer M A, Lodge T P . Macromolecules , . 2004 . 37 8933 - 8940 . DOI:10.1021/ma048607dhttp://doi.org/10.1021/ma048607d .
Marsat J N, Heydenreich M, Kleinpeter E, Berlepsch H V, Böttcher C, Laschewsky A . Macromolecules , . 2011 . 44 2092 - 2105 . DOI:10.1021/ma200032jhttp://doi.org/10.1021/ma200032j .
Cui H, Chen Z, Zhong S, Wooley K L, Pochan D J . Science , . 2007 . 317 647 - 650 . DOI:10.1126/science.1141768http://doi.org/10.1126/science.1141768 .
Berlepsch H V, Böttcher C, Skrabania K, Laschewsky A . Chem Commun , . 2009 . 17 2290 - 2292.
Fang B, Walther A, Wolf A, Xu Y, Yuan J, Müller A H . Angew Chem Int Ed , . 2009 . 48 2877 - 2880 . DOI:10.1002/anie.200806051http://doi.org/10.1002/anie.200806051 .
Zhang Y, Zhao C, Liu L, Zhao H . ACS Macro Lett , . 2013 . 2 891 - 895 . DOI:10.1021/mz400286dhttp://doi.org/10.1021/mz400286d .
Seo M, Hillmyer M A . Science , . 2012 . 336 1422 - 1425 . DOI:10.1126/science.1221383http://doi.org/10.1126/science.1221383 .
Olson D A, Chen L, Hillmyer M A . Chem Mater , . 2007 . 20 869 - 890.
Lu Z, Liu G, Phillips H, Hill J M, Chang J, Kydd R A . Nano Lett , . 2011 . 1 683 - 687.
Yang J, Lee C H, Ko H J, Suh J S, Yoon H G, Lee K, Huh Y M, Haam S . Angew Chem Int Ed , . 2007 . 46 8992 - 8995 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Deng R, Liu S, Li J, Liao Y, Tao J, Zhu J . Adv Mater , . 2012 . 24 1889 - 1893 . DOI:10.1002/adma.v24.14http://doi.org/10.1002/adma.v24.14 .
Svechkarev D, Dereka B, Doroshenko A . J Phys Chem A , . 2011 . 115 4223 - 4230 . DOI:10.1021/jp110974nhttp://doi.org/10.1021/jp110974n .
Zhou P, Meng Q, He G, Wu H, Duan C, Quan X . J Environ Monitor , . 2009 . 11 648 - 653 . DOI:10.1039/B815287Jhttp://doi.org/10.1039/B815287J .
Zhang X, Lian X, Liu L, Zhang J, Zhao H . Macromolecules , . 2008 . 41 7863 - 7869 . DOI:10.1021/ma801405jhttp://doi.org/10.1021/ma801405j .
Han G, Ju Y, Zhao H . Polym Chem , . 2016 . 7 1197 - 1206 . DOI:10.1039/C5PY01940Khttp://doi.org/10.1039/C5PY01940K .
Li C, Numata M, Bae A H, Sakurai K, Shinkai S . J Am Chem Soc , . 2005 . 127 4548 - 4549 . DOI:10.1021/ja050168qhttp://doi.org/10.1021/ja050168q .
Cheng D, Li Y, Wang J, Sun Y, Jin L, Li C, Lu Y . Chem Commun , . 2015 . 51 8544 - 8546 . DOI:10.1039/C5CC01713Khttp://doi.org/10.1039/C5CC01713K .
Pajula K, Taskinen M, Lehto V P, Ketolainen J, Korhonen O . Mol Pharmaceut , . 2010 . 7 795 - 804 . DOI:10.1021/mp900304phttp://doi.org/10.1021/mp900304p .
Guo C, Yang X, Wang X, Pei M, Zhang G . New J Chem , . 2013 . 37 4163 - 4169 . DOI:10.1039/c3nj00892dhttp://doi.org/10.1039/c3nj00892d .
Nguyen T Q, Martini I B, Liu J, Schwartz B J . J Phys Chem B , . 2000 . 104 237 - 255 . DOI:10.1021/jp993190chttp://doi.org/10.1021/jp993190c .
Nolan E M, Lippard S J . J Am Chem Soc , . 2003 . 125 14270 - 14271 . DOI:10.1021/ja037995ghttp://doi.org/10.1021/ja037995g .
0
Views
13
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution