浏览全部资源
扫码关注微信
北京化工大学 化工资源有效利用国家重点实验室 生物医用材料北京实验室 北京 100029
Published:2018-9,
Received:29 January 2018,
Revised:21 February 2018,
扫 描 看 全 文
Qi Zhang, Meng-juan Wei, Jin-rui Deng, Yi-xian Wu. Synthesis and Properties of Polytetrahydrofuran-
Qi Zhang, Meng-juan Wei, Jin-rui Deng, Yi-xian Wu. Synthesis and Properties of Polytetrahydrofuran-
通过可控/活性正离子开环聚合设计合成一系列不同分子量的聚四氢呋喃活性链(PTHF
+
),利用聚二甲基硅氧烷(PDMS)的双端胺基与PTHF
+
反应制备PDMS与聚四氢呋喃(PTHF)的新型三嵌段共聚物(PTHF-
b
-PDMS-
b
-PTHF). 通过FTIR与
1
H-NMR表征产物化学结构及共聚组成,由TGA、DSC及DMA研究嵌段共聚物热性能与动态力学性能,采用TEM和
in situ
POM观察嵌段共聚物的微观形态与结晶形态. 常温下表征共聚物材料自修复性能及37 °C 下表征其抗菌性能. 结果表明:采用AllylBr/AgClO
4
体系引发四氢呋喃可控/活性正离子开环聚合制备预期分子量的PTHF
+
,进一步与双端胺基官能化PDMS反应,反应效率可达95%左右,设计合成出一系列不同共聚组成的PTHF-
b
-PDMS-
b
-PTHF三嵌段共聚物. 该共聚物呈现双连续微观相分离结构和结晶现象,随着PTHF链段的增长(
M
n
PTHF
= 1000 ~ 2000),结晶速率加快;与相同分子量均聚PDMS和PTHF相比,所制备的三嵌段共聚物的热稳定性明显提高;三嵌段共聚物链中存在2个―NH―基团,在分子链间形成氢键导致产生物理交联及聚合物网络,使材料具有较好的弹性、柔韧性和强度,同时具有自修复特性,将材料完全切开,常温下24 h后断面发生良好愈合,在应力作用下可被拉伸至原长的1.5倍;原位制备的三嵌段共聚物/银纳米复合材料对大肠杆菌表现出良好的抗菌性能. 基于可控/活性正离子开环聚合方法合成的PTHF-
b
-PDMS-
b
-PTHF三嵌段共聚物/银纳米复合材料兼具PTHF、PDMS及纳米银的优良性能,在生物医用材料领域具有应用前景.
A series of polytetrahydrofuran (PTHF) and polydimethylsilane (PDMS) triblock copolymers (PTHF-
b
-PDMS-
b
-PTHF) have been synthesized
via
the combination of controlled termination of living PTHF chains (PTHF
+
) and ― NH
2
functional groups along PDMS macromolecular backbone with the copolymerization efficiency of near 100%. PTHF living chains and PTHF
+
were
in situ
prepared through living cationic opening polymerization of tetrahydrofuran (THF) with AllylBr/AgClO
4
initiating system at 0 °C. The molecular weights of the PTHF chains were adjusted by mediating the molar ratio of the monomer to initiator. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (
1
H-NMR) were used to characterize the microstructure of as-prepared triblock copolymers. Thermal properties of the triblock copolymers PTHF-
b
-PDMS-
b
-PTHF were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Additionally
polarization microscopy (POM) was employed to investigate the effect of number-average molecular weight (
M
n
PTHF
) of PTHF segments on the crystallization of the triblock copolymers. To have a further insight of the structures of the triblock copolymers
transmission electron microscopy (TEM) was also used to study their micromorphology. The antimicrobial activity of the material was characterized by determination of the
E. coli
inhibition zone. All characterization results aforementioned demonstrate that the well-defined triblock copolymers of PTHF-
b
-PDMS-
b
-PTHF with silver nanocomposites could be successfully prepared
in situ
with very high efficiency of
ca
. 95%. The crystallization of the triblock copolymers increased with increasing molecular weight of PTHF segments. Compared to the corresponding homopolymers of PTHF and PDMS
the thermal stability of the triblock copolymers was obviously improved. Moreover
the existence of amino groups (>N―H) in the macromolecular chains and a large number of ether bonds (―O―) from PTHF segments resulted in the formation of hydrogen bonds between the macro molecular chains of the triblock polymer
leading to the formation of physically cross-linked copolymer networks with more flexibility and better mechanical properties. Based on the strong hydrogen bonds
the obtained polymer networks show a pretty good self-healing performance at room temperature. The triblock copolymers were cut off at room temperature
then the cut section was self-healed for 24 h at room temperature
and the self-healed copolymers could be stretched to 1.5 times of the original length
which proved that the materials behaved good self-healing performance. Furthermore
the antimicrobial activity of the triblock copolymers was characterized by the inhibition zone method
and the diameter of inhibition zone of antibacterial was determined to be 13 mm
indicating a good antibacterial property. A novel nanocomposite
consisting of the triblock copolymer/silver
was synthesized
in situ
via
controlled/living cationic ring-opening polymerization
and showed excellent properties resulted from PTHF
PDMS and Ag nano-particles
suggesting their potential applications in biological and medical fields.
聚四氢呋喃聚二甲基硅氧烷聚合物网络自修复抗菌
PolytetrahydrofuranPolydimethylsilanePolymeric networksSelf-healing performanceAntimicrobial activity
Ryu I, Kim Y, Jung Y, Lim J, Caroline A R, Son J . ACS Appl Mater Interfaces , 2017 . 9 17427 - 17434 . DOI:10.1021/acsami.7b02910http://doi.org/10.1021/acsami.7b02910 .
David R, Michel P, Patrick N . Macromolecules , 1998 . 31 4301 - 4308 . DOI:10.1021/ma971577chttp://doi.org/10.1021/ma971577c .
Gabor E, Joseph P K . J Polym Sci, Part A: Polym Chem , 2005 . 43 4965 - 4971 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Prokopios G, Lo T, Ho R, Apostolos A . Polym Chem , 2017 . 8 843 - 850 . DOI:10.1039/C6PY01768Ahttp://doi.org/10.1039/C6PY01768A .
Jennifer M L, Leslie R B, Anthony K C C, John L B . J Biomater Sci, Polym Ed , 2014 . 25 786 - 801 . DOI:10.1080/09205063.2014.907669http://doi.org/10.1080/09205063.2014.907669 .
Zhang D D, Ruan Y B, Zhang B Q, Qiao X, Deng G H, Chen Y M, Liu C Y . Polymer , 2017 . 120 ( 30 ): 189 - 196.
Ibarboure E, Papon E, Rodríguez H J . Polymer , 2007 . 48 3717 - 3725 . DOI:10.1016/j.polymer.2007.04.046http://doi.org/10.1016/j.polymer.2007.04.046 .
Melissa A, Sherman, Joseph P . J Polym Sci, Part A: Polym Chem , 1998 . 36 1891 - 1899 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Chang C, Choi D, Kim W, James W Y, Lane V C, Kim Y, Kim S . J Control Release , 2007 . 118 245 - 253 . DOI:10.1016/j.jconrel.2006.11.025http://doi.org/10.1016/j.jconrel.2006.11.025 .
Juliane U, Rainer J, Robert L . Biomaterials , 2014 . 35 4848 - 4861 . DOI:10.1016/j.biomaterials.2014.02.029http://doi.org/10.1016/j.biomaterials.2014.02.029 .
Zhu M, Xiang L, Yang K, Shen L, Long F, Fan J, Yi H, Xiang J, Matthew P A . J Polym Res , 2012 . 19 9808 - 9818 . DOI:10.1007/s10965-011-9808-yhttp://doi.org/10.1007/s10965-011-9808-y .
Bazoly R, Bruno P, Thomas H, Véronique B, Philippe G . Eur Polym J , 2017 . 88 689 - 700 . DOI:10.1016/j.eurpolymj.2016.09.042http://doi.org/10.1016/j.eurpolymj.2016.09.042 .
Mi H, Jing X, Brett N N, Breanna S H, Chen G, Turng L . J Mater Chem B , 2017 . 5 4137 - 4151 . DOI:10.1039/C7TB00419Bhttp://doi.org/10.1039/C7TB00419B .
Deng W, Lei Y, Zhou S, Zhang A, Lin Y . RSC Adv , 2016 . 6 51694 - 51702 . DOI:10.1039/C6RA07146Ehttp://doi.org/10.1039/C6RA07146E .
Cheradame H, Sassatelli M, Pomel C, Sanh A, Gau-Racine J, Bacri L, Auvray L, Guegan P . Macromol Symp , 2008 . 261 167 - 181 . DOI:10.1002/(ISSN)1521-3900http://doi.org/10.1002/(ISSN)1521-3900 .
Hourston D J, Williams G D, Santguru R, Padget J C, Pears D . J Appl Polym Sci , 1999 . 74 556 - 566 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Wei X, Ying Y, Yu X . J Appl Polym Sci , 1988 . 70 1621 - 1626.
Guo A R, Yang F, Yu R, Wu Y X . Chinese J Polym Sci , 2015 . 33 ( 1 ): 23 - 35 . DOI:10.1007/s10118-015-1571-9http://doi.org/10.1007/s10118-015-1571-9 .
Guo A R, Yang W X, Yang F, Yu R, Wu Y X . Macromolecules , 2014 . 47 5450 - 5461 . DOI:10.1021/ma501060yhttp://doi.org/10.1021/ma501060y .
Liu Xiao(刘晓), Li Shengran(李晟冉), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2017, (11): 1-8
Wei Mengjuan(魏梦娟), Guo Anru(郭安儒), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2017, (3): 506-515
Wu Yixian(吴一弦), Zhou Qi(周琦), Du Jie(杜杰), Wang Nan(王楠). Acta Polymerica Sinica(高分子学报), 2017, (7): 1047-1057
Mu C, Fan X, Tian W, Bai Y, Yang Z, Fan W, Chen H . Polym Chem , 2012 . 3 3330 - 3339 . DOI:10.1039/c2py20586fhttp://doi.org/10.1039/c2py20586f .
Li Y, Bai T W, Li Y F, Ling J . Macromol Chem Phys , 2017 . 218 ( 3 ): 1600450 DOI:10.1002/macp.v218.3http://doi.org/10.1002/macp.v218.3 .
Pittsa K L, Abu-Mallouhb S, Fenecha M . J Mech Behav Biomed , 2013 . 17 333 - 336 . DOI:10.1016/j.jmbbm.2012.07.007http://doi.org/10.1016/j.jmbbm.2012.07.007 .
Murielle B, Sophie C, Odile F, Françoise P, Dominique T . Langmiur , 2010 . 26 ( 22 ): 17427 - 17434 . DOI:10.1021/la102384shttp://doi.org/10.1021/la102384s .
Li G F, Wu J, Wang B, Yan S F, Zhang K X, Ding J X, Yin J B . Biomacromolecules , 2015 . 16 3508 - 3518 . DOI:10.1021/acs.biomac.5b01287http://doi.org/10.1021/acs.biomac.5b01287 .
0
Views
22
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution