浏览全部资源
扫码关注微信
聚合物复合材料及功能材料教育部重点实验室 中山大学化学学院 广州 510275
Published:2018-7,
Received:5 February 2018,
Revised:10 April 2018,
扫 描 看 全 文
Wei-cong Mai, Bin Sun, Ding-cai Wu, Ruo-wen Fu. Fabrication and Structural Control of Hollow Nanonetwork-structured Polystyrene and Carbon Materials. [J]. Acta Polymerica Sinica 0(7):930-938(2018)
Wei-cong Mai, Bin Sun, Ding-cai Wu, Ruo-wen Fu. Fabrication and Structural Control of Hollow Nanonetwork-structured Polystyrene and Carbon Materials. [J]. Acta Polymerica Sinica 0(7):930-938(2018) DOI: 10.11777/j.issn1000-3304.2018.18044.
研究了纳米网络结构聚苯乙烯及其炭材料的结构设计、可控合成及其构效关系. 以二氧化硅为载体,通过表面引发原子转移自由基聚合-傅克超交联联合法成功在分子水平上设计制备出具有空心微孔聚苯乙烯纳米球网络单元的三维纳米网络结构聚苯乙烯(HNNS-PS),并通过控制PS分子量对三维纳米网络结构进行调控. 通过凝胶渗透色谱(GPC)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)、N
2
吸附等手段考察HNNS-PS的纳米结构和形貌,利用IGA研究HNNS-PS的有机蒸汽吸附性能,并通过升温速率控制实现三维纳米网络结构在炭化过程中的可继承性. 结果表明,通过调控PS分子量HNNS-PS网络单元粒径为263 ~ 332 nm,PS分子量越大,BET比表面积(Brunauer-Emmett-Teller specific surface area
S
BET
)越大,最高可达450 m
2
g
−1
,甲苯蒸汽吸附量最高可达534 mg g
−1
. 此外,当炭化升温速率较低(1 ~ 2 K min
−1
)时,制得的空心纳米球炭网络保留了典型的三维纳米网络结构形貌,
S
BET
最高可达696 m
2
g
−1
.
As an important class of novel porous materials
nanonetwork-structured polymer and carbon materials have an unique three-dimensional (3D) interconnected hierarchical porous structure
and thus hold considerable promise in a spectrum of applications including energy
adsorption
separation
catalysis
medicine
and so on. This study focuses on the innovative structure design
controllable fabrication and structure-property relationship of novel nanonetwork-structured polystyrene and carbon materials. Hollow nanonetwork-structured polystyrene (HNNS-PS)
with hollow microporous PS spherical network unit was designed and fabricated on molecular-level by combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and Friedel-Crafts hypercrosslinking reaction. The 3D nanonetwork structure was controlled by precisely tuning the molecular weight of PS. Gel permeation chromatography (GPC)
scanning electron microscopy (SEM)
transmission electron microscopy (TEM)
thermogravimetric analysis (TGA)
and nitrogen adsorption were used to characterize the structure and morphology of HNNS-PS
and intelligent gravimetric analyzer (IGA) was used to determine the adsorption capacity of HNNS-PS towards toluene vapor. Additionally
the inheritance of 3D nanonetwork structure during carbonization was realized by tuning the heating rate. It is found that
by utilizing the SI-ATRP technique
one was able to precisely tune the PS molecular weight and to fabricate SiO
2
-
g
-PS building blocks with different PS molecular weight
i.e.
SiO
2
-
g
-PS-22.4k
SiO
2
-
g
-PS-46.9k and SiO
2
-
g
-PS-94.4k. As the molecular weight of PS went up from 2.26 × 10
4
to 4.69 × 10
4
and 9.44 × 10
4
the diameter of the nanospheres increased from 196 nm to 223 and 282 nm. After the Friedel-Crafts hypercrosslinking reaction and silica etching
HNNS-PS with different PS molecular weight was obtained. Due to the introduction of the micropores
the diameter of the network units increased to 263
280 and 332 nm
respectively. As the molecular weight of PS went up
the Brunauer-Emmett-Teller surface area (
S
BET
) of HNNS-PS increased from 346 m
2
g
−1
to 390 and 450 m
2
g
−1
. HNNS-PS had a high adsorption capacity of up to 534 mg g
−1
towards toluene vapor at 25 °C. In addition
when the heating rate was low (1 or 2 K min
−1
) during carbonization
the as-prepared carbon materials could preserve their 3D nanonetwork structure morphologies with
S
BET
up to 696 m
2
g
−1
which paved the way for the design and fabrication of 3D nanonetwork structured carbon materials
and thus would have important theoretic significance and application value.
表面引发原子转移自由基聚合傅克超交联三维纳米网络结构有机蒸汽吸附空心纳米球炭网络
Surface-initiated atom transfer radical polymerizationFriedel-Crafts hypercrosslinkingThree-dimensional nanonetwork structureOrganic vapors adsorptionHollow nanosphere carbon network materials
Liang Y R, Fu R W, Wu D C . ACS Nano , . 2013 . 7 1748 - 1754.
Li Z H, Wu D C, Liang Y R, Fu R W, Matyjaszewski K . J Am Chem Soc , . 2014 . 136 4805 - 4808.
Liang Y R, Wu D C, Fu R W . Sci Rep , . 2013 . 3 1119 .
Su D S, Perathoner S, Centi G . Chem Rev , . 2013 . 113 5782 - 5816.
Wu D C, Li Z H, Zhong M J, Kowalewski T, Matyjaszewski K . Angew Chem Int Ed , . 2014 . 53 3957 - 3960.
Xu F, Tang Z W, Huang S Q, Chen L Y, Liang Y R, Mai W C, Zhong H, Fu R W, Wu D C . Nat Commun , . 2015 . 6 7221 .
Liang Y R, Wu B M, Wu D C . J Mater Chem , . 2011 . 21 14424 - 14427.
He C X, Liang Y R, Fu R W, Wu D C, Song S Q, Cai R . J Mater Chem , . 2011 . 21 16357 - 16364.
Deng X, Mammen L, Zhao Y, Lellig P, Mullen K, Li C, Butt H J, Vollmer D . Adv Mater , . 2011 . 23 2962 - 2965.
Zhao D Y, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D . Science , . 1998 . 279 548 - 552.
Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D . Nature , . 1998 . 396 152 - 155.
Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M . Nature , . 1999 . 402 276 - 279.
Furukawa H, Yaghi O M . J Am Chem Soc , . 2009 . 131 8875 - 8883.
Xu F, Xu H, Chen X, Wu D C, Wu Y, Liu H, Gu C, Fu R W, Jiang D L . Angew Chem Int Ed , . 2015 . 54 6814 - 6818.
Johnson S A, Ollivier P J, Mallouk T E . Science , . 1999 . 283 963 - 965.
Xu F, Chen X, Tang Z W, Wu D C, Fu R W, Jiang D L . Chem Commum , . 2014 . 50 4788 - 4790.
Li Z H, Wu D C, Huang X, Ma J H, Liu H, Liang Y R, Fu R W, Matyjaszewski K . Energy Environ Sci , . 2014 . 7 3006 - 3012.
Ouyang Y, Shi H M, Fu R W, Wu D C . Sci Rep , . 2013 . 3 1430 .
Wu D C, Hui C M, Dong H C, Pietrasik J, Ryu H J, Li Z H, Zhong M J, He H K, Kim E K, Jaroniec M, Kowalewski T, Matyjaszewski K . Macromolecules , . 2011 . 44 5846 - 5849.
Wu D C, Xu F, Sun B, Fu R, He H K, Matyjaszewski K . Chem Rev , . 2012 . 112 3959 - 4015.
Liu C, Li F, Ma L P, Cheng H M . Adv Mater , . 2010 . 22 28 - 62.
Su D S, Schlögl R . ChemSusChem , . 2010 . 3 136 - 168.
Titirici M, Antonietti M . Chem Soc Rev , . 2010 . 39 103 - 116.
Al-Muhtaseb S, Ritter J . Adv Mater , . 2003 . 15 101 - 114.
Wu D C, Fu R W, Dresselhaus M, Dresselhaus G . Carbon , . 2006 . 44 675 - 681.
Davankov V A, Rogoshin S V, Tsyurupa M P . J Polym Sci Polym Symp , . 1974 . 47 95 - 101.
Zou C, Wu D C, Li M, Zeng Q C, Xu F, Huang Z, Fu R W . J Mater Chem , . 2010 . 20 731 - 735.
Zeng Q C, Wu D C, Zou C, Xu F, Fu R W, Li Z H, Liang Y R, Su D S . Chem Commun , . 2010 . 46 5927 - 5929.
0
Views
21
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution