浏览全部资源
扫码关注微信
四川大学高分子材料科学与工程学院 高分子材料工程国家重点实验室 成都 610065
Published:2018-8,
Received:9 February 2018,
Revised:24 March 2018,
扫 描 看 全 文
Tian-yu Liu, Wei-jiao Jiang, Wei-xing Yang, Qin Zhang, Qiang Fu. Disentanglement of Polylactide Melt by Oscillatory Shear Stress Field. [J]. Acta Polymerica Sinica 0(8):1107-1115(2018)
Tian-yu Liu, Wei-jiao Jiang, Wei-xing Yang, Qin Zhang, Qiang Fu. Disentanglement of Polylactide Melt by Oscillatory Shear Stress Field. [J]. Acta Polymerica Sinica 0(8):1107-1115(2018) DOI: 10.11777/j.issn1000-3304.2018.18053.
利用哈克旋转流变仪在一定的温度和压力条件下对聚乳酸(PLA)熔体施加应变为正弦变化的振荡剪切场,从而对PLA分子链进行高效的降黏解缠. 结果表明,当温度为190 °C、样品厚度为1.5 mm时,PLA熔体在振动频率和剪切应变分别为3.5 Hz和50%处呈现最佳的降黏效果,其黏度相比于未经处理的熔体黏度下降了3 ~ 4个数量级. 同时,凝胶渗透色谱(GPC)测试结果表明经过振荡剪切处理的PLA其分子量基本不变,表明熔体黏度的大幅下降是由PLA分子链有效解缠结导致而非分子链降解. 示差扫描量热仪(DSC)结果表明,解缠效果最佳的PLA样品相比于未经处理的样品呈现出更低的玻璃化转变温度和较高的结晶度,进一步验证了熔体解缠的效果. 不仅如此,我们研究了不同退火时间(1 ~ 30 min)和温度(180 ~ 200 °C)对PLA分子链重新恢复缠结的影响,发现随着退火温度和时间的增加,PLA在120 °C下等温结晶的半结晶时间不断增加,并向未经解缠处理的PLA样品的半结晶时间不断靠近,表明振荡剪切导致的解缠能在低温度下保持较长时间,在高温下快速复缠.
The Haake rotational rheometer was employed to disentangle the polylactide melt by well-controlled oscillatory shear stress with sinusoidal strain and to monitor the melt viscosity in real time. Fisrtly
a PLA sample was disentangled with different strains at various frequency ranges
and the results indicated that the PLA melt represented the lowest melt viscosity which was four orders of magnitude lower than that of the PLA without any treatment when the strain was 50% with the frequency at 3.5 Hz. Then
the molecular weights of all these PLA were measured by gel permeation chromatography (GPC) and almost no change was detected after the oscillatory shear. Taken into account the results of the melt viscosity and the molecular weight measurement
it was reasonable that the significant reduction of PLA melt viscosity was attributed to the effective disentanglement of PLA chains
rather than their degradation. Furthermore
the effect of oscillatory shear on glass transition
crystallization and melting behavior was also studied. It was found that the effective disentanglement of PLA chains was achieved by oscillatory shearing
leading to a lower glass transition temperature and a cold-crystallization temperature together with largely improved crystallinity of PLA. Simultaneously
when compared to the PLA melt without any treatment
the isothermal crystallization of PLA at 120 °C with the lowest melt viscosity also demonstrated that the oscillatory shear could disentangle the PLA melt and thus accelerated the crystallization of PLA. More importantly
the influence of annealing time (1 − 30 min) and temperature (180 − 200 °C) was investigated as well. The semi-crystallization time at 120 °C of disentangled PLA constantly increased with the increasing annealing time and temperature
which got gradually closer to that of PLA without any treatment. These results demonstrated that the disentanglement could be maintained at relatively low temperature and re-entangled rapidly at relatively high temperature. In summary
the Haake rotational rheometer
the common test instrument for the rheological properties of polymer melt
can be employed for the investigation of the disentanglement of polymer melt
which is not merely a simple and effective method to disentangle the polymer melt
but also a well-controlled and real-time monitoring approach for systematically investigating the disentanglement of polymer melt.
振荡剪切聚乳酸熔体解缠结等温结晶行为
Oscillatory shearPolylactide meltDisentanglementIsothermal crystallization behavior
He Manjun(何曼君), Chen Weixiao(陈维孝), Dong Xixia(董西侠). Polymer Physics(高分子物理). Shanghai(上海): Fudan University(复旦大学), 1990. 38-118
Ibar J P . J Macromol Sci, Part B , . 2013 . 52 ( 3 ): 407 - 441.
Li Y, Shen K, Zhan J . J Appl Polym Sci , . 2006 . 102 ( 6 ): 5292 - 5296.
Li Sirong(李思蓉), Guo Linru(郭琳茹), Gao Yongsheng(高永胜), Zhou Dezhong(周德重), Wang Wenxin(王文新) . Acta Polymerica Sinica(高分子学报) , . 2017 . ( 2 ): 386 - 392.
Liu Jingru(刘晶如), Li Chen(李晨) . Acta Polymerica Sinica(高分子学报) , . 2017 . ( 5 ): 875 - 882.
Huang D, Yang Y, Zhuang G, Li B . Macromolecules , . 1999 . 32 ( 20 ): 6675 - 6678.
Psarski M, Piorkowska E, Galeski A . Macromolecules , . 2000 . 33 ( 3 ): 916 - 932.
Ren Y K, Li Y T, Li L B . Chinese J Polym Sci , . 2017 . 35 ( 11 ): 1415 - 1427.
Zhu Han(朱寒), Da Xun(答迅), Lu Chen(卢晨), Wu Yixian(吴一弦) . Acta Polymerica Sinica(高分子学报) , . 2018 . ( 5 ): 656 - 664.
Gong X J, Shi D A, Yang Y K, Jiang T, Meng Y F, Li R K Y, Jiang S C . Chinese J Polym Sci , . 2016 . 34 ( 8 ): 1039 - 1046.
Xue G, Lu Y, Shi G, Dai Q . Polymer , . 1994 . 35 ( 4 ): 892 - 894.
Ding J, Xue G, Dai Q, Cheng R . Polymer , . 1993 . 34 ( 15 ): 3325 - 3327.
Xie Zhengping(解正平), Liu Dong(刘栋), Zhu Pingping(朱平平), Yang Haiyang(杨海洋) . Acta Polymerica Sinica(高分子学报) , . 2010 . ( 5 ): 522 - 529.
He Guangjian(何光建), Qu Jinping(瞿金平), He Hezhi(何和智), Yin Xiaochun(殷小春) . China Plastics(中国塑料) , . 2006 . 20 ( 12 ): 56 - 59.
Ibar J P . J Macromol Sci, Part B , . 2013 . 52 ( 3 ): 442 - 461.
Ibar J P . J Macromol Sci, Part B , . 2013 . 52 ( 2 ): 223 - 309.
Gao X, Deng C, Ren C, Zhang J, Li Z, Shen K . J Appl Polym Sci , . 2012 . 124 ( 2 ): 1392 - 1397.
Zhang Y, Zhang J, Qian X, Deng P, Shen K . Polymer , . 2012 . 53 ( 19 ): 4318 - 4327.
Qu Jinping(瞿金平) . Journal of South China University of Technology(Natural Science Edition)(华南理工大学学报: 自然科学版) , . 1992 . 20 ( 4 ): 1 - 8.
Zhang Juan(张娟), Qu Jinping(瞿金平) . Plastics Science and Technology(塑料科技) , . 2002 . 4 1 - 5.
Zhang Juan(张娟), Qu Jinping(瞿金平) . China Plastics(中国塑料) , . 2002 . 16 ( 6 ): 23 - 26.
Gu Ting(辜婷), Zhu Dayong(朱大勇), Liu Dianxin(刘典新), Lu Shengjun(鲁圣军), Wang Caihong(王彩红) . China Plastics Industry(塑料工业) , . 2017 . 45 ( 2 ): 97 - 100.
Ma C G, Chen L, Xiong X M, Zhang J X, Rong M Z, Zhang M Q . Macromolecules , . 2004 . 37 ( 24 ): 8829 - 8831.
Tsuji H . Macromol Biosci , . 2005 . 5 ( 7 ): 569 - 597.
Yu Xiang(于翔), Xin Changzheng(辛长征), Zhu Chengshen(朱诚身), He Suqin(何素琴), Liu Wentao(刘文涛) . Materials Review(材料导报) , . 2010 . 24 ( 16 ): 29 - 34.
Xiao H, Lu W, Yeh J T . J Appl Polym Sci , . 2009 . 113 ( 1 ): 112 - 121.
Schmalzer A M, Giacomin A J . Macromol Theor Simul , . 2015 . 24 ( 3 ): 181 - 207.
Giacomin A J, Gilbert P H, Schmalzer A M . Struct Dynam , . 2015 . 2 ( 2 ): 024101 .
0
Views
25
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution