浏览全部资源
扫码关注微信
污染控制与资源化研究国家重点实验室 南京大学环境学院 南京 210023
Published:2018-7,
Received:10 February 2018,
Revised:26 March 2018,
扫 描 看 全 文
Yan Liu, Yang Gao, Xin Zhao, Chao Shan, Xiao-lin Zhang, Bing-cai Pan. A Gel Resin-supported Nano-hydrated Iron Oxide for Arsenate Sorption from Water. [J]. Acta Polymerica Sinica 0(7):939-948(2018)
Yan Liu, Yang Gao, Xin Zhao, Chao Shan, Xiao-lin Zhang, Bing-cai Pan. A Gel Resin-supported Nano-hydrated Iron Oxide for Arsenate Sorption from Water. [J]. Acta Polymerica Sinica 0(7):939-948(2018) DOI: 10.11777/j.issn1000-3304.2018.18056.
以凝胶型离子交换树脂(201 × 4)为基体制备出负载水合氧化铁的纳米复合材料HFO-201 × 4,发现出现了明显的物理孔结构,机械强度显著提升;且纳米颗粒主要为针状,可利用活性位点密度相比大孔型复合材料提高了约67%;对低浓度As(V)的吸附容量与吸附速率均显著高于大孔型复合材料,对模拟As(V)污染水的处理容量显著提高至大孔型复合材料的2倍左右,并可实现稳定循环再生.
Nano-scale hydrated ferric oxide (HFO) of high specific surface area and reactivity exhibits specific affinity toward arsenate owing to the abundant surface hydroxyl groups. Nevertheless
the ultrafine particle of nano-HFO tend to agglomerate and thereafter significantly limits its large-scale application in water treatment due to the excessive hydraulic pressure drop and difficult operation from the reaction systems. In comparison with macroporous ion exchangers
gel-type ones are more cost effective
though their utilization as hosts to support nanoparticles is intensively compromised by relatively poor pore structure
high swelling rate and weak mechanical strength. In this study we prepared a nanocomposite adsorbent HFO-201 × 4
via
ion exchange/
in situ
deposition method by using a gel resin-201 × 4 as the host of nano-HFO. The main objective of this study is to compare the structural features
physical and chemical properties of the nanocomposite to a macroporous resin-based nanocomposite HFO-201
and to evaluate their different adsorption property toward As(V). The results indicate that nano-HFO immobilized in HFO-201 × 4 was acicular
quite different from the spherical particles in HFO-201. Other structure properties of both composites
such as crystal form
pore structure
mechanical strength and swelling ratio
are quite similar. The maximum adsorption capacity of HFO-201 × 4 was slightly higher than that of HFO-201
while HFO-201 × 4 exhibited superior adsorption toward trace As(V) over HFO-201 in terms of adsorption capacity and kinetics
possibly arising from higher site density of HFO-201 × 4 (1.47 mmol/g) than HFO-201 (0.88 mmol/g). From the breakthrough curves of two separate fixed beds packed with both composites
the effective working capacity of HFO-201 × 4 was nearly twice of HFO-201. The exhausted HFO-201 × 4 could be efficiently regenerated for cyclic runs. This study demonstrates that gel-type anion exchange resins could serve as promising hosts for fabrication of similar nanocomposite for water decontamination.
凝胶型离子交换树脂水合氧化铁纳米复合材料五价砷选择性吸附
Gel anion exchangerHydrated ferric oxideArsenateNanocompositeSelective adsorption
Chai L, Yue M, Li Q, Zhang G, Zhang M, Wang Q, Liu H, Liu Q . Hydrometallurgy , . 2018 . 175 93 - 101.
Chutia P, Kato S, Kojima T, Satokawa S . J Hazard Mater , . 2009 . 162 ( 1 ): 440 - 447.
Bang S, Patel M, Lippincott L, Meng X . Chemosphere , . 2005 . 60 ( 3 ): 389 - 397.
Banerjee K, Amy G L, Prevost M, Nour S, Jekel M, Gallagher P M, Blumenschein C D . Water Res , . 2008 . 42 ( 13 ): 3371 - 3378.
Kundu S, Gupta A . Sep Purif Technol , . 2006 . 51 ( 2 ): 165 - 172.
Mohapatra D, Mishra D, Chaudhury G R, Das R P . Korean J Chem Eng , . 2007 . 24 ( 3 ): 426 - 430.
Zongliang H, Senlin T, Ping N . J Rare Earth , . 2012 . 30 ( 6 ): 563 - 572.
Fendorf S, Kocar B D . Adv Agron , . 2009 . 104 137 - 164.
Gupta A, Yunus M, Sankararamakrishnan N . Chemosphere , . 2012 . 86 ( 2 ): 150 - 155.
Ding M, De Jong B, Roosendaal S, Vredenberg A . Geochim Cosmochim AC , . 2000 . 64 ( 7 ): 1209 - 1219.
Murad E . Neues Jahrbuch für Mineralogie-Monatshefte , . 1982 . 2 45 - 56.
Murphy P J, Posner A M, Quirk J P . J Colloid Interface Sci , . 1976 . 56 ( 2 ): 298 - 311.
Zhao J, Huggins F E, Feng Z, Lu F, Shah N, Huffman G P . J Catal , . 1993 . 143 ( 2 ): 499 - 509.
Mohmood I, Lopes C B, Lopes I, Ahmad I, Duarte A C, Pereira E . Environ Sci Pollut Res , . 2013 . 20 ( 3 ): 1239 - 1260.
Chen W, Parette R, Zou J, Cannon F S, Dempsey B A . Water Res , . 2007 . 41 ( 9 ): 1851 - 1858.
Yang J, Zhang H, Yu M, Emmanuelawati I, Zou J, Yuan Z, Yu C . Adv Funct Mater , . 2014 . 24 ( 10 ): 1354 - 1363.
Gang D D, Deng B, Lin L . J Hazard Mater , . 2010 . 182 ( 1 ): 156 - 161.
Lofrano G, Carotenuto M, Libralato G, Domingos R F, Markus A, Dini L, Gautam R K, Baldantoni D, Rossi M, Sharma S K . Water Res , . 2016 . 92 ( 11 ): 22 - 37.
Smith R C, Li J, Padungthon S, Sengupta A K . Front Env Sci Eng , . 2015 . 9 ( 5 ): 929 - 938.
Zhang Q, Pan B, Chen X, Zhang W, Pan B, Zhang Q, Lv L, Zhao X . Sci China Ser B , . 2008 . 51 ( 4 ): 379 - 385.
Zhu Xingbao(朱兴宝), Wang Zhansheng(王占生), Wang Zhishi(王志石). Ion Exchange and Adsorption(离子交换与吸附), 1992, 8(5): 393-399
Pan Bingcai(潘丙才), Chen Xinqing(陈新庆), Zhang Weiming(张炜铭), Pan Bingjun(潘丙军), Shen Wei(沈威), Zhang Qingjian(张庆建), Du Wei(杜伟), Zhang Quanxing(张全兴), Chen Jinlong(陈金龙). China patent, CN1772370. 2005-11-02
Pan B, Wu J, Pan B, Lv L, Zhang W, Xiao L, Wang X, Tao X, Zheng S . Water Res , . 2009 . 43 ( 17 ): 4421 - 4429.
Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q . Water Res , . 2011 . 45 ( 6 ): 2191 - 2198.
Pan B, Xu J, Wu B, Li Z, Liu X . Environ Sci Technol , . 2013 . 47 ( 16 ): 9347 - 9354.
Zhang X, Cheng C, Qian J, Lu Z, Pan S, Pan B . Environ Sci Technol , . 2017 . 51 9210 - 9218.
Pan S, Zhang X, Qian J, Lu Z, Hua M, Cheng C, Pan B . Nanoscale , . 2017 . 9 19154 - 19161.
Dean J A. Langes Chemistry Handbook. Beijing: Science Press, 1991. 5-14
Chai L, Yang J, Zhang N, Wu P, Li Q, Wang Q, Liu H, Yi H . Chemosphere , . 2017 . 182 595 - 604.
Su C, Pals R . Environ Sci Technol , . 2001 . 35 ( 22 ): 4562 - 4568.
Foo K, Hameed B . Chem Eng J , . 2010 . 156 ( 1 ): 2 - 10.
0
Views
23
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution