浏览全部资源
扫码关注微信
华南理工大学材料科学与工程学院 广州 510640
Published:2018-6,
Received:7 March 2018,
Revised:27 March 2018,
扫 描 看 全 文
Guang-zhao Zhang. Hybrid Copolymerization. [J]. Acta Polymerica Sinica 0(6):668-673(2018)
Guang-zhao Zhang. Hybrid Copolymerization. [J]. Acta Polymerica Sinica 0(6):668-673(2018) DOI: 10.11777/j.issn1000-3304.2018.18074.
杂化共聚是具有不同可聚合基团的2种或2种以上单体的共聚合反应. 它颠覆了传统共聚的概念,因为传统共聚的单体必须具有相同的可聚合基团. 显然,杂化共聚为高分子合成提供了新路径. 然而,由于具有不同可聚合基团的单体聚合机理不同、反应活性相差大,杂化共聚十分具有挑战性. 20世纪80年代,先后出现了自由基开环杂化共聚和两性离子杂化共聚. 近年来,随着有机小分子引发/催化的发展,人们创立了阴离子杂化共聚和阳离子杂化共聚. 本文将介绍杂化共聚的进展情况.
Hybrid copolymerization is the process where two or more unlike monomers with different polymerizable groups polymerize together. It is revolutionary to the conventional copolymerization where the monomers have the same polymerizable groups. Hybrid copolymerization provides new routes for synthesis of polymers and gives great possibility to produce polymers with novel properties. However
because the unlike monomers follow different polymerization mechanisms and their reactivities are quite different
hybrid copolymerization has long been a challenge. Fortunately
some breakthroughs have been made in vinyl addition and ring-opening hybrid copolymerization since 1980’s. Bailey
et al
. first reported the radical ring-opening hybrid copolymerization of 2-methylene-1
3-dioxepane (MDO) with vinyl monomers such as styrene (St) and methyl methacrylate (MMA) in 1982. Such a copolymerization can yield relatively high molecular weight polymers (10
4
− 10
5
)
but the cyclic monomers are only limited to cyclic ketene acetals. Zwitteronic hybrid copolymerization was reported later but it only produces oligomers. With the development of organocatalysis
anionic and cationic hybrid copolymerizations were studied in recent years. Cationic hybrid copolymerization or the so-called concurrent cationic copolymerization of isobutylene oxide and vinyl ether was reported in 2013. The copolymerization is also applicable to other cyclic monomers with epoxides
but it produces polymers with a relatively low molecular weight (10
3
− 10
4
). In 2012
anionic hybrid copolymerization of
ε
-caprolactone (CL) and methyl methacrylate (MMA) was reported by our laboratory for the first time. Such a copolymerization is applicable to many common monomers including cyclic ester or cyclic ether and vinyl esters. The polymer synthesized by anionic hybrid copolymerization has a high molecular weight (10
4
− 10
5
) so that it can be used in different materials. Actually
clickable or hybranched biodegradable polymers were already prepared
via
the copolymerization. Particularly
it was used to develop high performance biodegradable polymers for marine anti-biofouling. The work describes the progress in hybrid copolymerization.
杂化共聚阴离子聚合阳离子聚合自由基开环聚合有机小分子催化
Hybrid copolymerizationAnionic polymerizationCationic polymerizationRadical ring-opening polymerizationOrganocatalysis
Chen Qidao(陈其道), Chen Ming(陈明), Hong Xiaoyin(洪啸吟). Chem Bull(化学通报), 2000, (6): 1-5
Chen Qidao(陈其道), Hong Xiaoyin(洪啸吟), Chen Ming(陈明). Acta Polymerica Sinica(高分子学报), 2001, (4): 530-534
Hong X Y, Chen Q D, Chen M, Yu R Z, Chen J . J Appl Polym Sci , 2001 . 79 1195 - 1200 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Lin Y, Stansbury J W . Polymer , 2003 . 44 4781 - 4789 . DOI:10.1016/S0032-3861(03)00469-5http://doi.org/10.1016/S0032-3861(03)00469-5 .
Crivello J V . J Polym Sci, Part A: Polym Chem , 2007 . 45 3759 - 3769 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Asandei A D, Saha G. . Polym Prepr (Am Chem Soc Div Polym Chem) , 2004 . 45 999 - 1000.
Kong L Z, Pan C Y . Macromol Chem Phys , 2007 . 208 2686 - 2697 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935 .
Jia Z F, Li G L, Zhu Q, Yan D Y, Zhu X Y, Chen H, Wu J L, Tu C L, Sun J . Chem Eur J , 2009 . 15 7593 - 7600 . DOI:10.1002/chem.v15:31http://doi.org/10.1002/chem.v15:31 .
Simionescu C I, Grigoras M, Bicu E, Onofrel G . Polym Bull , 1985 . 14 79 - 83.
Rivas B L, Pizarro G del C, Canessa G S . Polym Bull , 1988 . 19 123 - 128.
Hagiwara T, Takeda M, Hamana H, Narita T . Macromolecules , 1989 . 22 2025 - 2026 . DOI:10.1021/ma00194a090http://doi.org/10.1021/ma00194a090 .
Asenjo-Sanz I, Veloso A, Miranda J I, Alegría A, Pomposo J A, Barroso-Bujans F . Macromolecules , 2015 . 48 1664 - 1672 . DOI:10.1021/acs.macromol.5b00096http://doi.org/10.1021/acs.macromol.5b00096 .
Asenjo-Sanz I, Veloso A, Miranda J I, Pomposo J A, Barroso-Bujans F . Polym Chem , 2014 . 5 6905 - 6908 . DOI:10.1039/C4PY00574Khttp://doi.org/10.1039/C4PY00574K .
Li A, Lu L, Li X, He L L, Do C W, Garno J C, Zhang D H . Macromolecules , 2016 . 49 1163 - 1171 . DOI:10.1021/acs.macromol.5b02611http://doi.org/10.1021/acs.macromol.5b02611 .
Steinkoenig J, de Jongh P A J M, Haddleton D M, Goldmann A S, Barner-Kowollik C, Kempe K . Macromolecules , 2018 . 51 318 - 327 . DOI:10.1021/acs.macromol.7b02608http://doi.org/10.1021/acs.macromol.7b02608 .
Brown H A, Xiong S L, Medvedev G A, Young A . Macromolecules , 2014 . 47 2955 - 2963 . DOI:10.1021/ma500395jhttp://doi.org/10.1021/ma500395j .
Culkin D A, Jeong W, Csihony S, Gomez E D, Balsara N P, Hedrick J L, Waymouth R M . Angew Chem Int Ed , 2007 . 46 2627 - 2630 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Brown H A, Chang Y A, Waymouth R M . J Am Chem Soc , 2013 . 135 18738 - 18741 . DOI:10.1021/ja409843vhttp://doi.org/10.1021/ja409843v .
Brown H A, Waymouth R M . Acc Chem Res , 2013 . 46 2585 - 2596 . DOI:10.1021/ar400072zhttp://doi.org/10.1021/ar400072z .
Shin E J, Brown H A, Gonzalez S, Jeong W, Hedrick J L, Waymouth R M . Angew Chem Int Ed , 2011 . 50 6388 - 6391 . DOI:10.1002/anie.201101853http://doi.org/10.1002/anie.201101853 .
Takahashi T . J Polym Sci, Part A: Polym Chem , 1968 . 6 403 - 414 . DOI:10.1002/pol.1968.150060210http://doi.org/10.1002/pol.1968.150060210 .
Bailey W J . Polym J , 1985 . 17 85 - 95 . DOI:10.1295/polymj.17.85http://doi.org/10.1295/polymj.17.85 .
Bailey W J, Ni Z, Wu S R . J Polym Sci, Part A: Polym Chem , 1982 . 20 3021 - 3030 . DOI:10.1002/pol.1982.170201101http://doi.org/10.1002/pol.1982.170201101 .
Endo T, Okawara M, Bailey W J, Azuma K, Nate K, Yokono H . J Polym Sci Polym Lett , 1983 . 21 373 - 380 . DOI:10.1002/pol.1983.130210510http://doi.org/10.1002/pol.1983.130210510 .
Wei Y, Connors E J, Jia X R, Wang C . J Polym Sci, Part A: Polym Chem , 1998 . 36 761 - 771 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Ganda S, Jiang Y Y, Thomas D S, Eliezar J, Stenzel M H . Macromolecules , 2016 . 49 4136 - 4146 . DOI:10.1021/acs.macromol.6b00266http://doi.org/10.1021/acs.macromol.6b00266 .
Pan C Y, Lou X D . Macromol Chem Phys , 2000 . 201 1115 - 112 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935 .
Yuan J Y, Pan C Y . Eur Polym J , 2002 . 38 2069 - 2076 . DOI:10.1016/S0014-3057(02)00085-Xhttp://doi.org/10.1016/S0014-3057(02)00085-X .
Hedir G G, Bell C A, Ieong N S, Chapman E, Collins I R, O’Reilly R K, Dove A P . Macromolecules , 2014 . 47 2847 - 2852 . DOI:10.1021/ma500428ehttp://doi.org/10.1021/ma500428e .
Agarwal S, Ren L Q . Macromolecules , 2009 . 42 1574 - 1579 . DOI:10.1021/ma802615fhttp://doi.org/10.1021/ma802615f .
Agarwal S . J Polym Res , 2006 . 13 403 - 412.
Hedir G, Stubbs C, Aston P, Dove A P, Gibson M I . ACS Macro Lett , 2017 . 6 1404 - 1408 . DOI:10.1021/acsmacrolett.7b00905http://doi.org/10.1021/acsmacrolett.7b00905 .
Zhou X, Xie Q Y, Ma C F, Chen Z J, Zhang G Z . Ind Eng Chem Res , 2015 . 54 9559 - 9565 . DOI:10.1021/acs.iecr.5b01819http://doi.org/10.1021/acs.iecr.5b01819 .
Yang H J, Xu J B, Pispas S, Zhang G Z . Macromolecules , 2012 . 45 3312 - 3317 . DOI:10.1021/ma300291qhttp://doi.org/10.1021/ma300291q .
Yang H J, Xu J B, Zhang G Z . Sci China Chem , 2013 . 56 1101 - 1104 . DOI:10.1007/s11426-013-4868-yhttp://doi.org/10.1007/s11426-013-4868-y .
Yang Hongjun(杨宏军), Qian Xiaolei(钱小磊), Bo Tao(柏涛), Huang Wenyan(黄文艳), Xue Xiaoqiang(薛小强), Jiang Bibiao(蒋必彪). Acta Polymerica Sinica(高分子学报), 2014, (3): 356-360
Yang H J, Ge J, Huang W Y, Xue X Q, Chen J H, Jiang B B, Zhang G Z . RSC Adv , 2014 . 4 23377 - 23381 . DOI:10.1039/C4RA00829Dhttp://doi.org/10.1039/C4RA00829D .
Yang H J, Xu J B, Pispas S, Zhang G Z . RSC Adv , 2013 . 3 6853 - 6858 . DOI:10.1039/c3ra23422chttp://doi.org/10.1039/c3ra23422c .
Xu J B, Yang H J, Zhang G Z . Macromol Chem Phys , 2013 . 214 378 - 385 . DOI:10.1002/macp.201200510http://doi.org/10.1002/macp.201200510 .
Zhang G Z, Ma C F. US patent 9,701,794 B2, 2007-7-11
Kanazawa A, Kanaoka S, Aoshima S . J Am Chem Soc , 2013 . 135 9330 - 9333 . DOI:10.1021/ja404616chttp://doi.org/10.1021/ja404616c .
Kanazawa A, Kanaoka S, Aoshima S . Macromolecules , 2014 . 47 6635 - 6644 . DOI:10.1021/ma501707ahttp://doi.org/10.1021/ma501707a .
Shirouchi T, Kanazawa A, Kanaoka S, Aoshima S . Macromolecules , 2016 . 49 7184 - 7195 . DOI:10.1021/acs.macromol.6b01565http://doi.org/10.1021/acs.macromol.6b01565 .
Higuchi M, Kanazawa A, Aoshima S . ACS Macro Lett , 2017 . 6 365 - 369 . DOI:10.1021/acsmacrolett.7b00095http://doi.org/10.1021/acsmacrolett.7b00095 .
Kanazawa A, Aoshima S . ACS Macro Lett , 2015 . 4 783 - 787 . DOI:10.1021/acsmacrolett.5b00365http://doi.org/10.1021/acsmacrolett.5b00365 .
Hu S Y, Zhao J P, Zhang G Z, Schlaad H . Prog Polym Sci , 2017 . 74 34 - 77 . DOI:10.1016/j.progpolymsci.2017.07.002http://doi.org/10.1016/j.progpolymsci.2017.07.002 .
Song Q L, Hu S Y, Zhao J P, Zhang G Z . Chinese J Polym Sci , 2017 . 35 ( 5 ): 581 - 601 . DOI:10.1007/s10118-017-1925-6http://doi.org/10.1007/s10118-017-1925-6 .
0
Views
55
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution