Dan Xie, Chao Teng, Lei Jiang. Green Fabrication of Flexible, Thermally Conductive Graphene-carbonized Chinese Art Paper Composite Film. [J]. Acta Polymerica Sinica 0(11):1460-1466(2018)
DOI:
Dan Xie, Chao Teng, Lei Jiang. Green Fabrication of Flexible, Thermally Conductive Graphene-carbonized Chinese Art Paper Composite Film. [J]. Acta Polymerica Sinica 0(11):1460-1466(2018) DOI: 10.11777/j.issn1000-3304.2018.18087.
Green Fabrication of Flexible, Thermally Conductive Graphene-carbonized Chinese Art Paper Composite Film
Highly thermal conductive and flexible materials are urgently required in the heat management of high-power electronic devices. In this work
a composite film with these required properties
based on graphene and carbonized Chinese art paper
is prepared through a green route. Graphite is directly exfoliated in water in the presence of polyvinylpyrrolidone surfactant into high-quality graphene through a combination of large and small ball milling. The exfoliated graphene is filled into the porous network of the flexible superhydrophilic Chinese art paper through immersion absorption. After drying
the immersed Chinese art paper is mechanically compressed and carbonized at high temperature
leading to a composite film of graphene and carbonized Chinese art paper. TEM shows that the exfoliated graphene nanoplatelets is of layered structure and has a diameter in the range of several hundreds of nanometers to several micrometers. Raman spectroscopy proves that the exfoliated graphene nanoplatelet has a few defects with a low intensity ratio of D peak to G peak (0.25). SEM image shows that the graphene nanoplatelets filled in Chinese art paper are interconnected
which provides continuous channels for phonon transport. Mechanical compression increases the mass density of the composite film and improves the contact between the graphene nanoplatelets. Raman spectroscopy proves that annealing at high temperature decreases the amount of SP
3
hybrid carbon. As a result
the resultant composite film of graphene and carbonized Chinese art paper shows excellent thermal conductivity of 258 W/mK
superior to previously reported RGO-polymer composites (0.8 – 19.5 W/mK). The interconnected three-dimensional microfiber network of the carbonized Chinese art paper imparts the composite film with good flexibility
superior to that of the pure graphene film. After 100 bending cycles
the electrical resistance of the composite film remains practically unchanged. Compared with the conventional chemical oxidation-thermal reduction
the present route is environment-friendly
which avoids the use of strong oxidizing acids and does not generate acidic waste water.
关键词
石墨烯宣纸球磨电导率热导率
Keywords
GrapheneChinese art paperBall millingElectrical conductivityThermal conductivity
references
Zhang Y, Han H, Wang N, Zhang P, Fu Y, Murugesan M, Edwards M, JeppsonK, Volz S, Liu J . Adv Funct Mater , 2015 . 25 ( 28 ): 4430 - 4435.
Balandin A A . Nat Mater , 2011 . 10 ( 8 ): 569 - 581.
Guo Y, Li K, Hou C, Li Y, Zhang Q, Wang H . ACS Appl Mater Interfaces , 2016 . 8 ( 7 ): 4676 - 4683.
Zhang L, Zhang G, Liu C, Fan S . Nano Lett , 2012 . 12 ( 9 ): 4848 - 4852.
Song N J, Chen C M, Lu C, Liu Z, Kong Q Q, Cai R . J Mater Chem A , 2014 . 2 ( 39 ): 16563 - 16568.
Xin G, Yao T, Sun H, Scott S M, Shao D, Wang G, Lian J . Science , 2015 . 349 ( 6252 ): 1083 - 1087.
Jang W, Chen Z, Bao W, Lau C N, Dames C . Nano Lett , 2010 . 10 ( 10 ): 3909 - 3913.
Du X, Skachko I, Barker A, Andrei E Y . Nat Nanotechnol , 2008 . 3 ( 8 ): 491 - 495.
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N . Nano Lett , 2008 . 8 ( 3 ): 902 - 907.
Xin G, Sun H, Hu T, Fard H R, Sun X, Koratkar N, Borca-Tasciuc T, Lian J . Adv Mater , 2014 . 26 ( 26 ): 4521 - 4526.
Shen B, Zhai W, Zheng W . Adv Funct Mater , 2014 . 24 ( 28 ): 4542 - 4548.
Kong Q Q, Liu Z, Gao J G, Chen C M, Zhang Q, Zhou G, Tao Z C, Zhang X H, Wang M Z, Li F, Cai R . Adv Funct Mater , 2014 . 24 ( 27 ): 4222 - 4228.
Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C . Adv Mater , 2017 . 29 ( 27 ): 1700589 .
Varrla E, Paton K R, Backes C, Harvey A, Smith R J, McCauley J, Coleman J N . Nanoscale , 2014 . 6 ( 20 ): 11810 - 11819.
Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, CoelhoJ, O’Brien S E, McGuire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N . Nat Mater , 2014 . 13 ( 6 ): 624 - 630.
Stevens B, Guin T, Sarwar O, John A, Paton K R, Coleman J N, Grunlan J C . Macromol Rapid Commun , 2016 . 37 ( 22 ): 1790 - 1794.
Teng C, Xie D, Wang J, Yang Z, Ren G, Zhu Y . Adv Funct Mater , 2017 . 27 ( 20 ): 1700240 .
Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G . J Mater Chem , 2010 . 20 ( 28 ): 5817 - 5819.
Buzaglo M, Bar I P, Varenik M, Shunak L, Pevzner S, Regev O . Adv Mater , 2017 . 29 ( 8 ): 1603528 .
Wen Y, Wu M, Zhang M, Li C, Shi G . Adv Mater , 2017 . 29 ( 41 ): 1702831 .
Lotya M, King P J, Khan U, De S, Coleman J N . ACS Nano , 2010 . 4 ( 6 ): 3155 - 3162.
Khan U, O’Neill A, Lotya M, De S, Coleman J N . Small , 2010 . 6 ( 7 ): 864 - 871.
Li D, Muller M B, Gilje S, Kaner R B, Wallace G G . Nat Nanotechnol , 2008 . 3 ( 2 ): 101 - 105.
Wang G, Xu W, Xu F, Shen W, Song W . Materials Res Express , 2017 . 4 ( 11 ): 116405 .
Denis L N, Alexander A B . Rep Prog Phys , 2017 . 80 ( 3 ): 036502 .
Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Koo C M . Carbon , 2016 . 101 120 - 128.
Song N, Jiao D, Ding P, Cui S, Tang S, Shi L . J Mater Chem C , 2016 . 4 ( 2 ): 305 - 314.
Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F, Fu Q . J Mater Chem C , 2017 . 5 ( 15 ): 3748 - 3756.
Luo F, Wu K, Shi J, Du X, Li X, Yang L, Lu M . J Mater Chem A , 2017 . 5 ( 35 ): 18542 - 18550.
Cho E C, Huang J H, Li C P, Chang-Jian C W, Lee K C, Hsiao Y S, Huang J H . Carbon , 2016 . 102 66 - 73.
Wang F, Drzal L T, Qin Y, Huang Z . J Mater Sci , 2014 . 50 ( 3 ): 1082 - 1093.
Li A, Zhang C, Zhang Y F . Compos Part A: Appl Sci Manufac , 2017 . 101 108 - 114.
Simulation Study on the Interface Thermal Resistance of Graphene/Bio-nylon Composites
The Controllable Surface Structure and Oil-Water Separation Performance of Reinforced Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) Hollow Fiber Membranes
Application of Poly(3,4-ethylenedioxythiophene) in the Fields of Electromagnetic Interference Shielding
Study on Structure Design and Electromagnetic Shielding Properties of Polymer Nanocomposites
Study on the Construction of 3D-BN Network in Epoxy Resin by Introducing Foam Skeleton
Related Author
No data
Related Institution
Anhui Province Key Laboratory of Environment-friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University
State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tianjin Polytechnic University
College of Materials and Mechanical Engineering, Beijing Technology and Business University
College of Materials Science & Engineering, Beijing University of Chemical Technology
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology