浏览全部资源
扫码关注微信
华南理工大学 华南软物质科学与技术高等研究院 发光材料与器件国家重点实验室 广州 510640
Published:2018-8,
Received:9 April 2018,
Revised:22 May 2018,
扫 描 看 全 文
Wen Tang, Kan Yue, Stephen Z. D. Cheng. Molecular Topology Effects in Self-assembly of Giant Surfactants. [J]. Acta Polymerica Sinica 0(8):959-972(2018)
Wen Tang, Kan Yue, Stephen Z. D. Cheng. Molecular Topology Effects in Self-assembly of Giant Surfactants. [J]. Acta Polymerica Sinica 0(8):959-972(2018) DOI: 10.11777/j.issn1000-3304.2018.18102.
嵌段共聚物通过本体自组装可在纳米尺度上形成多样化的有序结构,并有望为下一代微纳加工技术的发展提供平台. 近十年来,以具有三维刚性结构的笼簇状分子作为结构基元,研究者们发展了一类独特的两亲性巨型表面活性剂体系. 本文系统总结了近年来巨型表面活性剂本体自组装方向的研究进展,并特别强调了其中广泛存在的分子拓扑结构效应. 实验结果表明,巨型表面活性剂可在10 nm乃至5 nm以下的特征尺寸上形成高度有序的自组装结构. 更加重要的是,通过精心设计的分子拓扑结构的变化,逐步揭示了若干种由分子拓扑结构主导的非常规自组装结构的形成机理,包括多尾链巨型表面活性剂中的非常规球状相以及多头基巨型表面活性剂中的高度不对称的层状相等. 这些结果推进了对两亲性大分子本体自组装中的分子拓扑结构效应的理解,并为开发基于嵌段聚合物微纳加工技术提供了重要的实验基础.
Self-assembly of block copolymers
which are composed of covalently connected incompatible polymer chains
can result in various ordered structures at the nanometer scale. This phenomenon
widely known as the microphase separation of block copolymers
may provide a technological platform for the development of next-generation nanopatterning techniques based on the " top-down” strategy. During the past decade
a unique class of novel amphiphilic macromolecules termed as giant surfactants have been reported
which are constructed from selected building blocks of cluster-like molecules having three-dimensional rigid conformations and nanometer sizes. By combining different " click-type” reactions
a highly efficient and modular synthetic method has been developed to prepare covalent conjugates of these molecular clusters and polymer chains. The resulting giant surfactants can be viewed as structural analogues of common block copolymers
and similarly
they also display interesting self-assembly behaviors both in solutions and in bulk. Herein
recent advances on the study of self-assembly of giant surfactants are summarized
with a particular emphasis on the molecular topology effects that can significantly change their self-assembly behaviors. As revealed by small angle X-ray scattering and transmission electron microscopy techniques
giant surfactants were able to self-assemble in bulk to form a series of highly ordered nanostructures with feature sizes below 10 nm or even 5 nm
with clearly shifted phase boundaries. More importantly
through rational molecular design to tune the molecular topology of giant surfactants
formation of some unusual nanostructures driven by molecular topological variations was achieved. Typical examples include several unconventional spherical phases
such as the Frank-Kasper A15 phase
the Frank-Kasper
σ
phase
and a quasicrystalline spherical phase
which were observed in multitailed giant surfactants
and a highly asymmetric lamellar phase formed by self-assembly of multiheaded giant surfactants. It is believed that these studies provide not only insights towards understanding the molecular topological effects in macromolecular self-assembly
but also experimental foundation for the development of block copolymer lithography that can afford nanostructures with sub-10-nm feature sizes.
微相分离巨型表面活性剂分子嵌段共聚物分子拓扑结构自组装
Microphase separationGiant surfactantsBlock copolymersMolecular topologySelf-assembly
Cheng S Z D . J Polym Sci, Part B: Polym Phys , . 2005 . 43 3361 - 3364 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488 .
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G . Macromolecules , . 2014 . 47 2 - 12 . DOI:10.1021/ma401762nhttp://doi.org/10.1021/ma401762n .
Bates F S, Fredrickson G H . Phys Today , . 1999 . 52 32 - 38.
Bates F S, Fredrickson G H . Annu Rev Phys Chem , . 1990 . 41 525 - 557 . DOI:10.1146/annurev.pc.41.100190.002521http://doi.org/10.1146/annurev.pc.41.100190.002521 .
Zhang L, Eisenberg A . Science , . 1995 . 268 1728 - 1731 . DOI:10.1126/science.268.5218.1728http://doi.org/10.1126/science.268.5218.1728 .
Sinturel C, Bates F S, Hillmyer M A . ACS Macro Lett , . 2015 . 4 1044 - 1050 . DOI:10.1021/acsmacrolett.5b00472http://doi.org/10.1021/acsmacrolett.5b00472 .
Zhang W B, Yu X, Wang C L, Sun H J, Hsieh I F, Li Y, Dong X H, Yue K, Van Horn R, Cheng S Z D . Macromolecules , . 2014 . 47 1221 - 1239 . DOI:10.1021/ma401724phttp://doi.org/10.1021/ma401724p .
Yin G Z, Zhang W B, Cheng S Z D . Sci China Chem , . 2017 . 60 338 - 352 . DOI:10.1007/s11426-016-0436-xhttp://doi.org/10.1007/s11426-016-0436-x .
Zhang Wenbin(张文彬), Chen Erqiang(陈尔强), Wang Jing(王晶), Zhang Wei(张维), Wang Linge(王林格), Cheng S Z D(程正迪) . 物理学报 , . 2016 . 65 183601 DOI:10.7498/aps.65.183601http://doi.org/10.7498/aps.65.183601 .
Yu X F, Zhong S, Li X P, Tu Y F, Yang S G, Van Horn R M, Ni C Y, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S Z D . J Am Chem Soc , . 2010 . 132 16741 - 16744 . DOI:10.1021/ja1078305http://doi.org/10.1021/ja1078305 .
Yu X, Zhang W B, Yue K, Li X, Liu H, Xin Y, Wang C L, Wesdemiotis C, Cheng S Z D . J Am Chem Soc , . 2012 . 134 7780 - 7787 . DOI:10.1021/ja3000529http://doi.org/10.1021/ja3000529 .
Yu X, Li Y, Dong X H, Yue K, Lin Z, Feng X, Huang M, Zhang W B, Cheng S Z D . J Polym Sci, Part B: Polym Phys , . 2014 . 52 1309 - 1325 . DOI:10.1002/polb.v52.20http://doi.org/10.1002/polb.v52.20 .
Yu X, Yue K, Hsieh I F, Li Y, Dong X H, Liu C, Xin Y, Wang H F, Shi A C, Newkome G R, Ho R M, Chen E Q, Zhang W B, Cheng S Z D . Proc Natl Acad Sci , . 2013 . 110 10078 - 10083 . DOI:10.1073/pnas.1302606110http://doi.org/10.1073/pnas.1302606110 .
Yue K, Liu C, Huang M, Huang J, Zhou Z, Wu K, Liu H, Lin Z, Shi A C, Zhang W B, Cheng S Z D . Macromolecules , . 2017 . 50 303 - 314 . DOI:10.1021/acs.macromol.6b02446http://doi.org/10.1021/acs.macromol.6b02446 .
Yue K, He J, Liu C, Huang M, Dong X H, Guo K, Ni P, Wesdemiotis C, Quirk R, Cheng S D, Zhang W B . Chinese J Polym Sci , . 2013 . 31 71 - 82 . DOI:10.1007/s10118-013-1215-xhttp://doi.org/10.1007/s10118-013-1215-x .
Yue K, Liu C, Guo K, Wu K, Dong X H, Liu H, Huang M, Wesdemiotis C, Cheng S Z D, Zhang W B . Polym Chem , . 2013 . 4 1056 - 1067 . DOI:10.1039/C2PY20881Dhttp://doi.org/10.1039/C2PY20881D .
Yue K, Huang M, Marson R L, He J, Huang J, Zhou Z, Wang J, Liu C, Yan X, Wu K, Guo Z, Liu H, Zhang W, Ni P, Wesdemiotis C, Zhang W B, Glotzer S C, Cheng S Z D . Proc Natl Acad Sci , . 2016 . 113 14195 - 14200 . DOI:10.1073/pnas.1609422113http://doi.org/10.1073/pnas.1609422113 .
Huang M, Yue K, Huang J, Liu C, Zhou Z, Wang J, Wu K, Shan W, Shi A C, Cheng S Z D . ACS Nano , . 2018 . 12 1868 - 1877 . DOI:10.1021/acsnano.7b08687http://doi.org/10.1021/acsnano.7b08687 .
Li Y, Dong X H, Guo K, Wang Z, Chen Z, Wesdemiotis C, Quirk R P, Zhang W B, Cheng S Z D . ACS Macro Lett , . 2012 . 1 834 - 839 . DOI:10.1021/mz300196xhttp://doi.org/10.1021/mz300196x .
He J, Yue K, Liu Y, Yu X, Ni P, Cavicchi K A, Quirk R P, Chen E Q, Cheng S Z D, Zhang W B . Polym Chem , . 2012 . 3 2112 - 2120 . DOI:10.1039/c2py20101ahttp://doi.org/10.1039/c2py20101a .
Yue K, Liu C, Guo K, Yu X, Huang M, Li Y, Wesdemiotis C, Cheng S Z D, Zhang W B . Macromolecules , . 2012 . 45 8126 - 8134 . DOI:10.1021/ma3013256http://doi.org/10.1021/ma3013256 .
Li Y, Dong X H, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang W B, Cheng S Z D . Polymer , . 2017 . 125 303 - 329 . DOI:10.1016/j.polymer.2017.08.008http://doi.org/10.1016/j.polymer.2017.08.008 .
Su H, Li Y, Yue K, Wang Z, Lu P, Feng X, Dong X H, Zhang S, Cheng S Z D, Zhang W B . Polym Chem , . 2014 . 5 3697 - 3706 . DOI:10.1039/c4py00107ahttp://doi.org/10.1039/c4py00107a .
Li Y, Su H, Feng X, Yue K, Wang Z, Lin Z, Zhu X, Fu Q, Zhang Z, Cheng S Z D, Zhang W B . Polym Chem , . 2015 . 6 827 - 837 . DOI:10.1039/C4PY01360Chttp://doi.org/10.1039/C4PY01360C .
Su H, Zheng J, Wang Z, Lin F, Feng X, Dong X H, Becker M L, Cheng S Z D, Zhang W B, Li Y . ACS Macro Lett , . 2013 . 2 645 - 650 . DOI:10.1021/mz4002723http://doi.org/10.1021/mz4002723 .
Wang X M, Guo Q Y, Han S Y, Wang J Y, Han D, Fu Q, Zhang W B . Chem Eur J , . 2015 . 21 15246 - 15255 . DOI:10.1002/chem.v21.43http://doi.org/10.1002/chem.v21.43 .
Han S Y, Wang X M, Shao Y, Guo Q Y, Li Y, Zhang W B . Chem Eur J , . 2016 . 22 6397 - 6403 . DOI:10.1002/chem.v22.18http://doi.org/10.1002/chem.v22.18 .
Wang X M, Shao Y, Xu J, Jin X, Shen R H, Jin P F, Shen D W, Wang J, Li W, He J, Ni P, Zhang W B . Macromolecules , . 2017 . 50 3943 - 3953 . DOI:10.1021/acs.macromol.7b00503http://doi.org/10.1021/acs.macromol.7b00503 .
Wang X M, Shao Y, Jin P F, Jiang W, Hu W, Yang S, Li W, He J, Ni P, Zhang W B . Macromolecules , . 2018 . 51 1110 - 1119 . DOI:10.1021/acs.macromol.7b02383http://doi.org/10.1021/acs.macromol.7b02383 .
Zhang W B, Tu Y, Ranjan R, Van Horn R M, Leng S, Wang J, Polce M J, Wesdemiotis C, Quirk R P, Newkome G R, Cheng S Z D . Macromolecules , . 2008 . 41 515 - 517 . DOI:10.1021/ma702345rhttp://doi.org/10.1021/ma702345r .
Lin Z, Lu P, Hsu C H, Sun J, Zhou Y, Huang M, Yue K, Ni B, Dong X H, Li X, Zhang W B, Yu X, Cheng S Z D . Macromolecules , . 2015 . 48 5496 - 5503 . DOI:10.1021/acs.macromol.5b00741http://doi.org/10.1021/acs.macromol.5b00741 .
Dong X H, Ni B, Huang M, Hsu C H, Chen Z, Lin Z, Zhang W B, Shi A C, Cheng S Z D . Macromolecules , . 2015 . 48 7172 - 7179 . DOI:10.1021/acs.macromol.5b01661http://doi.org/10.1021/acs.macromol.5b01661 .
Dong X H, Ni B, Huang M, Hsu C H, Bai R, Zhang W B, Shi A C, Cheng S Z D . Angew Chem Int Ed , . 2016 . 55 2459 - 2463 . DOI:10.1002/anie.201510524http://doi.org/10.1002/anie.201510524 .
Huang M, Yue K, Wang J, Hsu C H, Wang L, Cheng S Z D . Sci China Chem , . 2018 . 61 33 - 45.
Shao Y, Yin H, Wang X M, Han S Y, Yan X, Xu J, He J, Ni P, Zhang W B . Polym Chem , . 2016 . 7 2381 - 2388 . DOI:10.1039/C6PY00241Bhttp://doi.org/10.1039/C6PY00241B .
Huang M, Hsu C H, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang W B, Yue K, Cheng S Z D . Science , . 2015 . 348 424 - 428 . DOI:10.1126/science.aaa2421http://doi.org/10.1126/science.aaa2421 .
Lin Z, Yang X, Xu H, Sakurai T, Matsuda W, Seki S, Zhou Y, Sun J, Wu K Y, Yan X Y, Zhang R, Huang M, Mao J, Wesdemiotis C, Aida T, Zhang W, Cheng S Z D . J Am Chem Soc , . 2017 . 139 18616 - 18622 . DOI:10.1021/jacs.7b10193http://doi.org/10.1021/jacs.7b10193 .
Feng X, Zhang R, Li Y, Hong Y L, Guo D, Lang K, Wu K Y, Huang M, Mao J, Wesdemiotis C, Nishiyama Y, Zhang W, Zhang W, Miyoshi T, Li T, Cheng S Z D . ACS Cent Sci , . 2017 . 3 860 - 867 . DOI:10.1021/acscentsci.7b00188http://doi.org/10.1021/acscentsci.7b00188 .
Ren L J, Wu H, Hu M B, Wei Y H, Lin Y, Wang W . Chem Asian J , . 2018 . 13 775 - 779 . DOI:10.1002/asia.201800005http://doi.org/10.1002/asia.201800005 .
Ma C, Wu H, Huang Z H, Guo R H, Hu M B, Kübel C, Yan L T, Wang W . Angew Chem Int Ed , . 2015 . 54 15699 - 15704 . DOI:10.1002/anie.201507237http://doi.org/10.1002/anie.201507237 .
Hou X S, Zhu G L, Ren L J, Huang Z H, Zhang R B, Ungar G, Yan L T, Wang W . J Am Chem Soc , . 2018 . 140 1805 - 1811 . DOI:10.1021/jacs.7b11324http://doi.org/10.1021/jacs.7b11324 .
Liu H, Hsu C H, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang W B, Yue K, Cheng S Z D . J Am Chem Soc , . 2014 . 136 10691 - 10699 . DOI:10.1021/ja504497hhttp://doi.org/10.1021/ja504497h .
Liu H, Luo J, Shan W, Guo D, Wang J, Hsu C H, Huang M, Zhang W, Lotz B, Zhang W B, Liu T, Yue K, Cheng S Z D . ACS Nano , . 2016 . 10 6585 - 6596 . DOI:10.1021/acsnano.6b01336http://doi.org/10.1021/acsnano.6b01336 .
Zhang W, Lu X, Mao J, Hsu C H, Mu G, Huang M, Guo Q, Liu H, Wesdemiotis C, Li T, Zhang W B, Li Y, Cheng S Z D . Angew Chem Int Ed , . 2017 . 56 15014 - 15019 . DOI:10.1002/anie.201709354http://doi.org/10.1002/anie.201709354 .
Materials Genome Initiative for Global Competitiveness. Washington, D C: National Science and Technology Council, 2011 (https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf, accessed on May 20th, 2018).
0
Views
45
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution