浏览全部资源
扫码关注微信
1.中国科学院软物质化学重点实验室 中国科学技术大学化学与材料科学学院 合肥 230026
2.安徽大学物质科学与信息技术研究院 合肥 230601
Published:2018-12,
Received:11 April 2018,
Revised:4 May 2018,
扫 描 看 全 文
Xing Wu, Chen Jiang, Na Zhang, Fang Chen, Wei Bai, Ru-ke Bai. Preparation of Few-layered Organic-silica Hybrid Nanomaterials by Two-dimensional Self-assembly and Polymerization. [J]. Acta Polymerica Sinica 0(12):1507-1513(2018)
Xing Wu, Chen Jiang, Na Zhang, Fang Chen, Wei Bai, Ru-ke Bai. Preparation of Few-layered Organic-silica Hybrid Nanomaterials by Two-dimensional Self-assembly and Polymerization. [J]. Acta Polymerica Sinica 0(12):1507-1513(2018) DOI: 10.11777/j.issn1000-3304.2018.18104.
设计、合成了一种两亲性硅氧烷前驱体(PABI),一端为羧基,另一端为具有反应性的硅氧烷基团. 利用两亲性分子在水溶液中的自组装特性,研究了它的“二维自组装聚合”. 实验结果表明,PABI的二维自组装聚合行为与介质、碱的种类和碱的用量等因素有关. 我们发现用四甲基胍(TMG)为碱时,PABI在水中通过自组装聚合可以形成寡层二维有机-氧化硅纳米杂化材料. 透射电子显微镜(TEM)和原子力显微镜(AFM)的测试结果显示,片层的尺寸为几百纳米到几微米,片层的厚度为6 ~ 9 nm. 当在水/有机溶剂(如DMSO、DMF、THF或MeOH)的混合溶液中进行自组装聚合时,均未得到层状结构的杂化材料. 当用三乙胺和氢氧化钠为碱时,在水中只能得到多层堆积的杂化材料. 本研究结果表明,通过二维自组装聚合,可以获得寡层甚至单层二维有机-氧化硅杂化材料.
It is still a challenge to prepare single-layered or few-layered organic-silica hybrid nanomaterials now. In this study
we designed and synthesized an amphiphilic organosilane (PABI) with phenyl urea and carboxyl groups
and investigated its two-dimensional self-assembly and polymerization. The spontaneous formation of few-layered organic-silica hybrid nanomaterials was driven by synergetic association of the hydrophobic interactions
π-π
stacking interactions
hydrogen-bond interactions
electrostatic repulsion and hydrolytic condensation of the precursor under the appropriate conditions. The results indicated that the two-dimensional self-assembly and the polymerization were related to the experimental conditions
such as the medium
the type and the content of the base. The structure of the hybrid nanomaterials was demonstrated by nuclear magnetic resonance (
1
H-NMR)
Fourier transform infrared spectroscopy (FTIR) and
29
Si cross-polarization magic-angle spinning nuclear magnetic resonance (CP-MAS
29
Si-NMR). The morphology of the hybrid nanomaterials was confirmed by electron microscopy. Two or three layered organic-silica hybrid nanomaterials were obtained by two-dimensional self-assembly and polymerization of PABI in water when using 1
1
3
3-tetramethylguanidine (TMG) as a base under suitable condition (mole ratio of TMG to PABI was 1.1:1 or 1.5:1). The laminated sheet of the materials
with lateral size ranging from several hundred nanometers to several micrometers and thickness of 6 – 9 nm
was demonstrated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). However
when the content of TMG (mole ratio of TMG to PABI was 2:1) was too high
irregular aggregates were formed. In addition
irregular hybrid materials were obtained when organic solvents
such as DMF
DMSO
THF and MeOH
were respectively added to water. Moreover
when trimethylamine (TEA) and sodium hydroxide (NaOH) were used as bases
thick laminated sheets were obtained
and the result was consistent with X-ray diffraction spectrogram (XRD). These results are of great significance for preparation of few-layered or single-layered organic-silica hybrid nanomaterials.
两亲性硅氧烷二维自组装聚合纳米杂化材料寡层
Amphiphilic organosilane2D self-assembly and polymerizationHybrid nanomaterialsFew-layered
Fahmi A, Pietsch T, Mendoza C, Cheval N . Mater Today , 2009 . 12 ( 5 ): 44 - 50 . DOI:10.1016/S1369-7021(09)70159-2http://doi.org/10.1016/S1369-7021(09)70159-2 .
Lambert S, Tran K Y, Arrachart G, Noville F, Henrist C, Bied C, Moreau J J E, Man M W C, Heinrichs B . Micropor Mesopor Mat , 2008 . 115 ( 3 ): 609 - 617 . DOI:10.1016/j.micromeso.2008.03.003http://doi.org/10.1016/j.micromeso.2008.03.003 .
Sanchez C, Belleville P, Popall M, Nicole L . Chem Soc Rev , 2011 . 40 ( 2 ): 696 - 753 . DOI:10.1039/c0cs00136hhttp://doi.org/10.1039/c0cs00136h .
Wang F K, Lu X, He C . J Mater Chem , 2011 . 21 ( 9 ): 2775 - 2782 . DOI:10.1039/C0JM02785Ehttp://doi.org/10.1039/C0JM02785E .
Yu X, Zhong S, Li X, Tu Y, Wang S, Horn R M V, Ni C, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S Z D . J Am Chem Soc , 2010 . 132 ( 47 ): 16741 - 16744 . DOI:10.1021/ja1078305http://doi.org/10.1021/ja1078305 .
Toyodome H, Kaneko Y, Shikinaka K, Iyi L . Polymer , 2012 . 53 ( 26 ): 6021 - 6026 . DOI:10.1016/j.polymer.2012.10.052http://doi.org/10.1016/j.polymer.2012.10.052 .
Chemtob A, Ni L, Croutxé-Barghorn C, Boury B . Chem Eur J , 2014 . 20 ( 7 ): 1790 - 1806 . DOI:10.1002/chem.v20.7http://doi.org/10.1002/chem.v20.7 .
Mehdi A, Reye C, Corriu R . Chem Soc Rev , 2011 . 40 ( 2 ): 563 - 574 . DOI:10.1039/B920516Khttp://doi.org/10.1039/B920516K .
Shimojima A, Kuroda K . Chem Rec , 2006 . 6 ( 2 ): 53 - 63 . DOI:10.1002/(ISSN)1528-0691http://doi.org/10.1002/(ISSN)1528-0691 .
Kuroda K, Shimojima A, Kawahara K, Wakabayashi R, Tamura Y, Asakura Y, Kitahara M . Chem Mater , 2013 . 26 ( 1 ): 211 - 220.
Croutxé-Barghorn C, Chemtob A, Ni L, Deroche I . Polym Int , 2017 . 66 ( 5 ): 640 - 646 . DOI:10.1002/pi.5300http://doi.org/10.1002/pi.5300 .
Besson E, Mehdi A, Reyé C, Gaveaub P, Corriua R J P . Dalton Trans , 2010 . 39 ( 32 ): 7534 - 7539 . DOI:10.1039/c0dt00117ahttp://doi.org/10.1039/c0dt00117a .
Jiang J, Lima O V, Pei Y, Zeng X C, Tan L, Forsythe E . J Am Chem Soc , 2009 . 131 ( 3 ): 900 - 901 . DOI:10.1021/ja808103hhttp://doi.org/10.1021/ja808103h .
Besnard R, Arrachart G, Cambedouzou J, Pellet-Rostaing S . RSC Adv , 2015 . 5 ( 71 ): 57521 - 57531 . DOI:10.1039/C5RA06944Khttp://doi.org/10.1039/C5RA06944K .
Besnard R, Arrachart G, Cambedouzou J, Pellet-Rostaing S . Langmuir , 2016 . 32 ( 18 ): 4624 - 4634 . DOI:10.1021/acs.langmuir.6b00589http://doi.org/10.1021/acs.langmuir.6b00589 .
Mouawia R, Mehdi A, Reyé C, Corriu R . J Mater Chem , 2007 . 17 ( 7 ): 616 - 618 . DOI:10.1039/b618228chttp://doi.org/10.1039/b618228c .
Mouawia R, Mehdi A, Reyé C, Corriu R J P . J Mater Chem , 2008 . 18 ( 17 ): 2028 - 2035 . DOI:10.1039/b719162fhttp://doi.org/10.1039/b719162f .
Besson E, Mehdi A, Chollet H, Réyé C, Guilard R, Corriu R J P . J Mater Chem , 2008 . 18 ( 11 ): 1193 - 1195 . DOI:10.1039/b719635khttp://doi.org/10.1039/b719635k .
Jiang J, Lima O V, Pei Y, Jiang Z, Chen Z, Yu C, Wang J, Zeng X C, Forsythe E, Tan L . ACS Nano , 2010 . 4 ( 7 ): 3773 - 3780 . DOI:10.1021/nn100273mhttp://doi.org/10.1021/nn100273m .
Li H, Kang J, Yang J, Wu B . J Phys Chem C , 2016 . 120 ( 30 ): 16907 - 16912 . DOI:10.1021/acs.jpcc.6b01312http://doi.org/10.1021/acs.jpcc.6b01312 .
Alauzun J, Mehdi A, Reyé C, Corriu R . J Mater Chem , 2005 . 15 ( 8 ): 841 - 843 . DOI:10.1039/B416157Bhttp://doi.org/10.1039/B416157B .
Ni B, Huang M, Chen Z, Chen Y, Hsu C, Li Y, Pochan D, Zhang W, Cheng S Z D, Dong X . J Am Chem Soc , 2015 . 137 ( 4 ): 1392 - 1395 . DOI:10.1021/ja511694ahttp://doi.org/10.1021/ja511694a .
Barboiu M, Cerneaux S, van der Lee A, Vaughan G . J Am Chem Soc , 2004 . 126 ( 11 ): 3545 - 3550 . DOI:10.1021/ja039146zhttp://doi.org/10.1021/ja039146z .
Zhang N, Wang T, Wu X, Jiang C, Zhang T, Jin B, Ji H, Bai W, Bai R . ACS Nano , 2017 . 11 ( 7 ): 7223 - 7229 . DOI:10.1021/acsnano.7b03109http://doi.org/10.1021/acsnano.7b03109 .
Li Z, Tang M, Dai J, Wang T, Wang Z, Bai W, Bai R . Macromolecules , 2017 . 50 ( 11 ): 4292 - 4299 . DOI:10.1021/acs.macromol.7b00668http://doi.org/10.1021/acs.macromol.7b00668 .
0
Views
17
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution