浏览全部资源
扫码关注微信
上海市先进聚合物材料重点实验室 超细材料制备与应用教育部重点实验室 华东理工大学材料科学与工程学院 上海 200237
Published:2018-12,
Received:29 May 2018,
Revised:15 June 2018,
扫 描 看 全 文
Jia Liu, Xiao-ning Ma, Mei-dong Lang. Synthesis and Characterization of Dynamic Covalent Polymers Based on Ditelluride Bonds. [J]. Acta Polymerica Sinica 0(12):1514-1523(2018)
Jia Liu, Xiao-ning Ma, Mei-dong Lang. Synthesis and Characterization of Dynamic Covalent Polymers Based on Ditelluride Bonds. [J]. Acta Polymerica Sinica 0(12):1514-1523(2018) DOI: 10.11777/j.issn1000-3304.2018.18133.
以单质碲、硼氢化钠和溴丙醇为原料合成了一种羟基功能化的双碲化合物,即2
2'-二碲二丙醇((HOC
3
H
6
Te)
2
);以(HOC
3
H
6
Te)
2
为引发剂,在脂肪酶Novozym 435的催化作用下,分别引发己内酯(
ε
-CL)和1
3-二恶烷-2-酮(TMC)开环聚合,制备了含双碲聚己内酯((PCLTe)
2
)和含双碲聚碳酸酯((PTMCTe)
2
),并利用
1
H-NMR、
125
Te-NMR对其结构进行表征. 以联苯二碲(PhTe)
2
、(PCLTe)
2
为研究对象,利用
1
H-NMR、
13
C-NMR、
125
Te-NMR探究了含双碲聚合物的动态性能. 结果表明,在避光和室温条件下,(PhTe)
2
与(PCLTe)
2
能立即发生双碲键的相互交换反应,并瞬间达到反应平衡. 利用
125
Te-NMR、飞行时间质谱(MALDI-TOF-MS)证明了在没有外界刺激的条件下,(PCLTe)
2
与(PTMCTe)
2
之间可以发生相互交换反应,并产生了嵌段共聚物(PCLTeTePTMC)
这种嵌段共聚物极大地提高了(PCLTe)
2
与(PTMCTe)
2
之间的相容性,并改善了(PCLTe)
2
/(PTMCTe)
2
共混薄膜的力学性能.
Dynamic covalent polymers that inherit the reversibility and robustness of dynamic covalent bonds have attracted considerable attention in terms of self-healing
stimuli-responsiveness
and recyclability. However
most of them require an external stimulus to induce their dynamic properties
which may limit their application. Here
two dynamic covalent polymers based on ditelluride bonds were prepared
which were free of external conditions. First
a novel stable ditelluride-containing compound
di-(1-hydroxypropyl) ditelluride ((HOC
3
H
6
Te)
2
) was synthesized. Then
two ditelluride-containing polymers
polycaprolactone (PCLTe)
2
and poly(1
3-trimethylene carbonate) (PTMCTe)
2
were synthesized
via
the enzymatic ring-opening polymerization using (HOC
3
H
6
Te)
2
as the initiator and Novozym 435 as the catalyst. The structures of (PCLTe)
2
and (PTMCTe)
2
were verified by
1
H-NMR and
125
Te-NMR. The dynamic properties of the ditelluride-containing polymers were investigated using (PCLTe)
2
and (PTMCTe)
2
as the model polymers and confirmed by
1
H-NMR
13
C-NMR and
125
Te-NMR spectra. The results indicated that the ditelluride exchange between (PCLTe)
2
and diphenyl ditelluride ((PhTe)
2
) could occur spontaneously in the dark at room temperature without any external stimuli and the equilibrium of the reaction could be reached immediately. The dynamic exchange between (PCLTe)
2
and (PTMCTe)
2
was confirmed by
125
Te-NMR spectrum and MALDI-TOF mass
which could occur spontaneously without any external stimuli. The results of MALDI-TOF mass showed that a di-block polymer (PTMCTeTePCL) was formed during the exchange process. The tensile test results indicated that the tensile strength and the elongation of PCL/PTMC composite were 3.07 MPa and 38.26%
respectively. However
as for (PCLTe)
2
/(PTMCTe)
2
composite
the tensile strength and the elongation were increased to 5.22 MPa and 80.51%
respectively. The scanning electron microscopy images showed that the compatibility between (PCLTe)
2
and (PTMCTe)
2
was significantly improved comparing with the PCL/PTMC composite. The results indicated that the ditelluride exchange had a great effect on the properties of (PCLTe)
2
/(PTMCTe)
2
composite. This study developed the ditelluride-related dynamic chemistry and promoted the application of dynamic covalent polymers.
双碲键动态共价键酶催化嵌段共聚物
Ditelluride bondsDynamic covalent polymerEnzymatic polymerizationDi-block polymer
Maeda T, Otsuka H, Takahara A . Prog Polym Sci , 2009 . 34 581 - 604.
Garcia F, Smulders M M . J Polym Sci, Part A: Polym Chem , 2016 . 54 3551 - 3577.
Roy N, Bruchmann B, Lehn J M . Chem Soc Rev , 2015 . 44 3786 - 3807.
Jin Y, Yu C, Denman R J, Zhang W . Chem Soc Rev , 2013 . 42 6634 - 6654.
Rowan S J, Cantrill S J, Cousins G R, Sanders J K, Stoddart J F . Angew Chem Int Ed , 2002 . 41 898 - 952.
Xiang Hongping(向洪平), Rong Minzhi(容敏智), Zhang Mingqiu(章明秋) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 7 ): 1130 - 1140.
Feng L, Yu Z, Bian Y, Lu J, Shi X, Chai C . Polymer , 2017 . 124 48 - 59.
Yu Zhengyang(于正洋), Feng Libang(冯利邦), Chai Changsheng(柴昌盛), Wang Yanping(王彦平), Liu Yanhua (刘艳花), Qiang Xiaohu(强小虎) . 高分子学报 , Acta Polymerica Sinica , 2016 . ( 11 ): 1579 - 1586.
Cash J J, Kubo T, Bapat A P, Sumerlin B S . Macromolecules , 2015 . 48 2098 - 2106.
Cromwell O R, Chung J, Guan Z . J Am Chem Soc , 2015 . 137 6492 - 6495.
Lei Z Q, Xiang H P, Yuan Y J, Rong M Z, Zhang M Q . Chem Mater , 2014 . 26 2038 - 2046.
Xu W M, Rong M Z, Zhang M Q . J Mater Chem A , 2016 . 4 10683 - 10690.
Pepels M, Filot I, Klumperman B, Goossens H . Polym Chem , 2013 . 4 4955 - 4965.
Fritz U F, Delius M . Chem Commun , 2016 . 52 6363 - 6366.
Ji S, Cao W, Yu Y, Xu H . Angew Chem Int Ed , 2014 . 53 6781 - 6785.
Kildahl N K . J Chem Educ , 1995 . 72 423 - 424.
Granger P, Chapelle S, Mcwhinnie W R, Rubaie A . J Organomet Chem , 1981 . 220 149 - 158.
Kumar A, Singh A K . Inorg Chem Commun , 2007 . 10 1315 - 1317.
0
Views
22
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution