浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学院大学 北京 100049
3.Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
Published:2019-1,
Published Online:28 August 2018,
Received:5 June 2018,
Revised:23 July 2018,
扫 描 看 全 文
Huan Ge, Fa-jun Zhang, Hai-ying Huang, Tian-bai He. Studies on the Crystallization Orientation in Micromolded PCL-
Huan Ge, Fa-jun Zhang, Hai-ying Huang, Tian-bai He. Studies on the Crystallization Orientation in Micromolded PCL-
以双结晶性嵌段共聚物聚
ɛ
-己内酯-聚左旋丙交酯(PCL-
b
-PLLA)为研究对象,利用纳米压印技术,借助原子力显微镜(AFM)和掠入射广角X-射线衍射(GIXRD)研究受限空间内聚合物的结晶取向行为. 根据PCL和PLLA结晶顺序的差别,可以将结晶过程分为一步结晶(
T
-
T
c
PCL
)和两步结晶(
T
-
T
c
PLLA
-
T
c
PCL
). 在一步结晶过程中,PCL晶体被限制在模板中并且通过改变压印方式(熔体直接压印,R1或室温压印(
RT
)后再升温,R2),可在受限空间内获得长程有序的PCL晶体,晶体的快速生长方向(
b
轴)分别沿着垂直于(
N
)和平行于(
P
)模板的长轴方向. 晶体生长方向的改变与压印过程中受限空间内熔体流动产生的取向以及嵌段共聚物分子链受限作用有关. 在两步结晶过程中,虽然PCL和PLLA晶体被限制在受限空间内,但是PLLA在较高的温度下结晶,压印形成的熔体流动产生的剪切取向在结晶前会很快回复到平衡态,而处于熔融态的PCL对PLLA分子链的运动无明显的限制作用,受限空间内PLLA晶体无明显取向结构. 随后第二步PCL结晶时,PLLA晶体为受限空间内的PCL提供了更多的成核位点,导致受限空间内PCL晶体同样无明显长程有序性.
In this work
we have studied the crystallization orientation behavior of poly(
ɛ
-caprolactone)-
b
-poly(
l
-lactide) (PCL-
b
-PLLA) under physically confined environment provided
via
a soft nanoimprinting lithography (NIL) process. The confined thin films were annealed and crystallized following two different routes
and the resulting morphology and crystal orientation were systematically investigated by atomic force microscopy (AFM) and grazing-incidence X-ray diffraction (GIXRD). Based on the large difference of the crystallization temperatures of PCL and PLLA
both one-step (
T
−
T
c
PCL
) and two-step crystallization (
T
−
T
c
PLLA
−
T
c
PCL
) processes were used. It was found that PCL crystals were successfully confined in the micromolded domains after one-step crystallization. Interestingly
the fast growth direction of PCL crystals (
b
-axis) was either along the normal or the parallel direction of the trench
depending on the flow mechanisms during the nanoimprinting process. In the melt nanoimprinting process
polymer melt was squeezed into the trench and forced into the normal direction by the shearing effect and the expanding of the soft mold. By contrast
in room temperature (RT) imprinting process
upon annealing
polymer melt went into the trench by the capillary force and the flow direction of polymer melt was inclined to along the trench. For two-step crystallization process
both PLLA and PCL crystal were confined in the trench. However
due to the high crystallization temperature of PLLA
in the first step of PLLA crystallization
no preferential growth orientation was observed. These results indicated that
without imprinting induced shear flow (which relaxed quickly at PLLA crystallization temperature)
the physical confinement of the soft mold was not strong enough to guide the crystal growth direction. Subsequent second step of PCL crystallization was enhanced by the existing PLLA crystal
resulting randomly distributed crystal orientation.
嵌段共聚物纳米压印晶体取向熔体流动
Block copolymerNanoimprintingCrystal orientationMelt flow
He W N, Xu J T . Prog Polym Sci , 2012 . 37 ( 10 ): 1350 - 1400.
Michell R M, Müeller A J . Prog Polym Sci , 2016 . 54-55 183 - 213 . DOI:10.1016/j.progpolymsci.2015.10.007http://doi.org/10.1016/j.progpolymsci.2015.10.007 .
Nakagawa S, Marubayashi H, Nojima S . Eur Polym J , 2015 . 70 262 - 275 . DOI:10.1016/j.eurpolymj.2015.07.018http://doi.org/10.1016/j.eurpolymj.2015.07.018 .
Prud'homme R E . Prog Polym Sci , 2016 . 54-55 214 - 231 . DOI:10.1016/j.progpolymsci.2015.11.001http://doi.org/10.1016/j.progpolymsci.2015.11.001 .
Su Y L, Liu G M, Xie B Q, Fu D S, Wang D J . Acc Chem Res , 2014 . 47 ( 1 ): 192 - 201 . DOI:10.1021/ar400116chttp://doi.org/10.1021/ar400116c .
Wen T, Wang H F, Li M C, Ho R M . Acc Chem Res , 2017 . 50 ( 4 ): 1011 - 1021 . DOI:10.1021/acs.accounts.7b00025http://doi.org/10.1021/acs.accounts.7b00025 .
Loo Y L, Register R A, Ryan A J, Dee G T . Macromolecules , 2001 . 34 ( 26 ): 8968 - 8977 . DOI:10.1021/ma011521phttp://doi.org/10.1021/ma011521p .
Wu H, Wang W, Yang H X, Su Z H . Macromolecules , 2007 . 40 ( 12 ): 4244 - 4249 . DOI:10.1021/ma070564ohttp://doi.org/10.1021/ma070564o .
Guan Y, Liu G, Ding G, Yang T, Mueller A J, Wang D . Macromolecules , 2015 . 48 ( 8 ): 2526 - 2533 . DOI:10.1021/acs.macromol.5b00108http://doi.org/10.1021/acs.macromol.5b00108 .
Wang H P, Keum J K, Hiltner A, Baer E . Macromolecules , 2010 . 43 ( 7 ): 3359 - 3364 . DOI:10.1021/ma902780phttp://doi.org/10.1021/ma902780p .
Wang H P, Keum J K, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A . Science , 2009 . 323 ( 5915 ): 757 - 760 . DOI:10.1126/science.1164601http://doi.org/10.1126/science.1164601 .
Zhang F J, Huang H Y, Hu Z J, Chen Y Z, He T B . Langmuir , 2003 . 19 ( 24 ): 10100 - 10108 . DOI:10.1021/la035290mhttp://doi.org/10.1021/la035290m .
Loo Y L, Register R A, Ryan A J . Phys Rev Lett , 2000 . 84 ( 18 ): 4120 - 4123 . DOI:10.1103/PhysRevLett.84.4120http://doi.org/10.1103/PhysRevLett.84.4120 .
Lin M C, Chen H L, Su W B, Su C J, Jeng U S, Tzeng F Y, Wu J Y, Tsai J C, Hashimoto T . Macromolecules , 2012 . 45 ( 12 ): 5114 - 5127 . DOI:10.1021/ma300711khttp://doi.org/10.1021/ma300711k .
Wen T, Ho R M . ACS Macro Lett , 2017 . 6 ( 4 ): 370 - 374 . DOI:10.1021/acsmacrolett.7b00138http://doi.org/10.1021/acsmacrolett.7b00138 .
Liang G D, Xu J T, Fan Z Q, Mai S M, Ryan A J . Macromolecules , 2006 . 39 ( 16 ): 5471 - 5478 . DOI:10.1021/ma060405phttp://doi.org/10.1021/ma060405p .
Zhang P, Huang H Y, Yan D R, He T B . Langmuir , 2012 . 28 ( 15 ): 6419 - 6427 . DOI:10.1021/la300439hhttp://doi.org/10.1021/la300439h .
Yang J, Liang Y R, Luo J, Zhao C Z, Han C C . Macromolecules , 2012 . 45 ( 10 ): 4254 - 4261 . DOI:10.1021/ma202505fhttp://doi.org/10.1021/ma202505f .
Nakagawa S, Tanaka T, Ishizone T, Nojima S, Kamimura K, Yamaguchi K, Nakahama S . Polymer , 2014 . 55 ( 16 ): 4394 - 4400 . DOI:10.1016/j.polymer.2014.06.049http://doi.org/10.1016/j.polymer.2014.06.049 .
Nakagawa S, Ishizone T, Nojima S, Kamimura K, Yamaguchi K, Nakahama S . Macromolecules , 2015 . 48 ( 19 ): 7138 - 7145 . DOI:10.1021/acs.macromol.5b01744http://doi.org/10.1021/acs.macromol.5b01744 .
Ho R M, Hsieh P Y, Tseng W H, Lin C C, Huang B H, Lotz B . Macromolecules , 2003 . 36 ( 24 ): 9085 - 9092 . DOI:10.1021/ma0347868http://doi.org/10.1021/ma0347868 .
Sun Y S, Chung T M, Li Y J, Ho R M, Ko B T, Jeng U S . Macromolecules , 2007 . 40 ( 18 ): 6778 - 6781 . DOI:10.1021/ma0709708http://doi.org/10.1021/ma0709708 .
Nakagawa S, Kadena K I, Ishizone T, Nojima S, Shimizu T, Yamaguchi K, Nakahama S . Macromolecules , 2012 . 45 ( 4 ): 1892 - 1900 . DOI:10.1021/ma202566fhttp://doi.org/10.1021/ma202566f .
Guo L J . Adv Mater , 2007 . 19 ( 4 ): 495 - 513 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Hu Z J, Baralia G, Bayot V, Gohy J F, Jonas A M . Nano Lett , 2005 . 5 ( 9 ): 1738 - 1743 . DOI:10.1021/nl051097whttp://doi.org/10.1021/nl051097w .
Hu Z, Jonas A M . Soft Matter , 2010 . 6 ( 1 ): 21 - 28 . DOI:10.1039/B918168Ghttp://doi.org/10.1039/B918168G .
Hu Z J, Muls B, Gence L, Serban D A, Hofkens J, Melinte S, Nysten B, Demoustier-Champagne S, Jonas A M . Nano Lett , 2007 . 7 ( 12 ): 3639 - 3644 . DOI:10.1021/nl071869jhttp://doi.org/10.1021/nl071869j .
Hu Z J, Tian M W, Nysten B, Jonas A M . Nat Mater , 2009 . 8 ( 1 ): 62 - 67 . DOI:10.1038/nmat2339http://doi.org/10.1038/nmat2339 .
Aryal M, Trivedi K, Hu W C . ACS Nano , 2009 . 3 ( 10 ): 3085 - 3090 . DOI:10.1021/nn900831mhttp://doi.org/10.1021/nn900831m .
Ding G Z, Wu Y J, Weng Y Y, Zhang W D, Hu Z J . Macromolecules , 2013 . 46 ( 21 ): 8638 - 8643 . DOI:10.1021/ma401700dhttp://doi.org/10.1021/ma401700d .
Zhang P, Huang H Y, He T B, Hu Z J . ACS Macro Lett , 2012 . 1 ( 8 ): 1007 - 1011 . DOI:10.1021/mz3002758http://doi.org/10.1021/mz3002758 .
Zhang P, Huang H Y, Chen Y, Yu S, Krywka C, Vayalil S K, Roth S V, He T B . Chinese J Polym Sci , 2014 . 32 ( 9 ): 1188 - 1198 . DOI:10.1007/s10118-014-1506-xhttp://doi.org/10.1007/s10118-014-1506-x .
Ho R M, Chiang Y W, Lin C C, Huang B H . Macromolecules , 2005 . 38 ( 11 ): 4769 - 4779.
Peponi L, Navarro-Baena I, Baez J E, Kenny J M, Marcos-Fernandez A . Polymer , 2012 . 53 ( 21 ): 4561 - 4568 . DOI:10.1016/j.polymer.2012.07.066http://doi.org/10.1016/j.polymer.2012.07.066 .
Hamley I W, Parras P, Castelletto V, Castillo R V, Müller A J, Pollet E, Dubois P, Martin C M . Macromol Chem Phys , 2006 . 207 ( 11 ): 941 - 953 . DOI:10.1002/(ISSN)1521-3935http://doi.org/10.1002/(ISSN)1521-3935 .
Kim J K, Park D J, Lee M S, Ihn K J . Polymer , 2001 . 42 ( 17 ): 7429 - 7441 . DOI:10.1016/S0032-3861(01)00217-8http://doi.org/10.1016/S0032-3861(01)00217-8 .
Yan D R, Huang H Y, He T B, Zhang F J . Langmuir , 2011 . 27 ( 19 ): 11973 - 11980 . DOI:10.1021/la202379bhttp://doi.org/10.1021/la202379b .
. Acta Polymerica Sinica(高分子学报) , 2016 . ( 9 ): 1179 - 1197.
Laredo E, Prutsky N, Bello A, Grimau M, Castillo R V, Müller A J, Dubois P . Eur Phys J E , 2007 . 23 ( 3 ): 295 - 303 . DOI:10.1140/epje/i2007-10191-6http://doi.org/10.1140/epje/i2007-10191-6 .
Hamley I W, Castelletto V, Castillo R V, Müller A J, Martin C M, Pollet E, Dubois P. . Macromolecules , 2005 . 38 ( 2 ): 463 - 472 . DOI:10.1021/ma0481499http://doi.org/10.1021/ma0481499 .
Chatani Y, Okita Y, Tadokoro H, Yamashit Y . Polym J , 1970 . 5 ( 1 ): 555 - 562.
Heyderman L J, Schift H, David C, Gobrecht J, Schweizer T . Microelectron Eng , 2000 . 54 ( 3 ): 229 - 245.
Thébault P, Niedermayer S, Landis S, Chaix N, Guenoun P, Daillant J, Man X K, Andelman D, Orland H . Adv Mater , 2012 . 24 ( 15 ): 1952 - 1955 . DOI:10.1002/adma.201103532http://doi.org/10.1002/adma.201103532 .
Chiang Y W, Ho R M, Thomas E L, Burger C, Hsiao B S . Adv Func Mater , 2009 . 19 ( 3 ): 448 - 459 . DOI:10.1002/adfm.v19:3http://doi.org/10.1002/adfm.v19:3 .
Palacios J K, Zhao J, Hadjichristidis N, Müller A J . Macromolecules , 2017 . 50 ( 24 ): 9683 - 9695 . DOI:10.1021/acs.macromol.7b02148http://doi.org/10.1021/acs.macromol.7b02148 .
0
Views
19
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution