浏览全部资源
扫码关注微信
1.上海应用技术大学化学与环境工程学院 上海 201418
2.聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200433
3.中国科学院有机功能分子合成与组装化学重点实验室 上海有机化学研究所 上海 200032
Published:2019-1,
Published Online:12 October 2018,
Received:20 July 2018,
Revised:24 August 2018,
扫 描 看 全 文
Yu Zhu, Wen-ling Ye, Zhi-feng Liu, Wei Deng, Mei-na Liu. Synthesis and Properties of Well-defined Glycopolymers
Yu Zhu, Wen-ling Ye, Zhi-feng Liu, Wei Deng, Mei-na Liu. Synthesis and Properties of Well-defined Glycopolymers
通过将开环易位聚合反应和CuAAC反应联用制备了一系列含糖(共)聚合物. 首先采用Cu(I)催化的叠氮-端炔[3 + 2]环加成(CuAAC)合成了含无保护基团的
α
-D-甘露糖、
β
-D-葡萄糖和
β
-D-半乳糖的7-氧杂降冰片烯衍生物单体;接着利用Grubbs三代催化剂在常温常压下的均相有机溶剂中对不同类的含糖单体进行开环易位聚合(ROMP),通过改变含糖单体的种类和比例,得到了一系列结构明确的含糖均聚和共聚物
P1 ~ P11
. 用核磁共振谱(NMR)和高分辨质谱(HRMS)对合成的糖单体的结构及分子量进行表征. 含糖聚合物的分子量(分布)及结构通过凝胶渗透色谱仪(GPC)和核磁共振谱(NMR)进行表征,结果表明分子量可控(
M
n
= 1.3 × 10
4
~ 2.7 × 10
4
),分子量分布较窄(PDI = 1.22 ~ 1.45). 进一步采用浊度法、动态光散射和等温滴定量热仪研究了含糖聚合物与刀豆蛋白A (concanavalin A,Con A)的特异性识别. 浊度法研究发现,共聚物
α
-D-甘露糖的比例越大,其与Con A的特异性识别能力越强,而只含
β
-D-半乳糖
P9
或
β
-D-葡萄糖
P5
对刀豆蛋白没有特异性识别. 动态光散射实验证实,随着刀豆蛋白A的加入,含甘露糖的溶液中的粒径明显增大,含糖聚合物溶液的粒径由100 nm左右增加到1000 nm左右,而不含甘露糖的聚合物几乎没有变化. 等温滴定量热仪测定3种代表性共聚物与Con A的结合常数
K
a
分别为
P3
(50 mol%
α
-D-甘露糖:50 mol%
β
-D-葡萄糖,
K
a
= 1.58 × 10
6
L/mol),
P7
(50 mol%
α
-D-甘露糖:50 mol%
β
-D-半乳糖,
K
a
= 2.23 × 10
6
L/mol)和
P11
(50 mol%
α
-D-甘露糖:50 mol% 非糖基团,
K
a
= 2.05 × 10
5
L/mol). 可以看出
P11
与Con A结合能力相对于
P3
和
P7
要小很多,说明
β
-D-葡萄糖和
β
-D-半乳糖对
α
-D-甘露糖与Con A的识别作用有较强的协同效应.
A series of glycopolymers were prepared through combining ring-opening metathesis polymerization (ROMP) and CuAAC reaction. Firstly
a wide range of exo-7-oxanorbornene derivative glycomonomers without protecting groups were synthesized
via
a copper(I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC) reaction
including
α
-D-mannose
β
-D-glucose
and
β
-D-galactose. A series of well-defined glycopolymers were then obtained from various types and proportions of the above glycomonomers using ring-opening metathesis polymerization (ROMP) with the 3
rd
Grubbs catalyst in homogeneous organic solvent. Molecular weight and polydispersity index (PDI) of the glycopolymers were characterized by NMR spectroscopy and GPC
from which the well-controlled molecular weight (
M
n
= 1.3 × 10
4
− 2.7 × 10
4
) in narrow distribution (PDI = 1.22 ~ 1.45) was confirmed. Turbidity measurement
dynamic light scattering (DLS)
and isothermal titration calorimetry (ITC) were carried out to investigate the specific recognition of glycopolymers with concanavalin A (Con A). Turbidimetric study suggested a stronger binding ability of glycopolymers with Con A at higher ratio of
α
-D-mannose in glycopolymers. In comparison
those composed solely of
β
-D-galactose (
P9
) or
β
-D-glucose (
P5
) could not bind to Con A. Dynamic light scattering experiments demonstrated that the particle sizes of glycopolymers containing
α
-D-mannose approached 1000 nm with the addition of Con A (originally 100 nm)
while the glycopolymers without
α
-D-mannose showed little size variation. Binding constants (
K
a
) of the three glycopolymers
P3
(50 mol%
α
-D-mannose
50 mol%
β
-D-glucose)
P7
(50 mol%
α
-D-mannose
50 mol%
β
-D-galactose)
and
P11
(50 mol%
α
-D-mannose
50 mol% non-sugar motif) with Con A were 1.58 × 10
6
2.23 × 10
6
and 2.05 × 10
5
L/mol
respectively
as measured by isothermal titration calorimetry.
P11
exhibited much weaker ability to bind with Con A than
P3
and
P7
did
which implied a synergistic effect of
β
-D-glucose and
β
-D-galactose on the recognition of
α
-D-mannose with Con A.
开环易位聚合含糖聚合物CuAAC反应凝集素识别刀豆蛋白A
Ring-opening metathesis polymerizationGlycopolymersCuAAC reactionLectin recognitionConcanavalin A
Hashimoto K, Ohsawa R, Saito H . J Polym Sci, Part A: Polym Chem , 1999 . 37 2773 - 2779 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518 .
Fu Q, Gowda D C . Bioconjugate Chem , 2001 . 12 271 - 279 . DOI:10.1021/bc000100uhttp://doi.org/10.1021/bc000100u .
Ma Z, Jia Y, Zhu X . Biomacromolecules , 2017 . 18 3812 - 3818 . DOI:10.1021/acs.biomac.7b01106http://doi.org/10.1021/acs.biomac.7b01106 .
Wolfenden M L, Cloninger M J . Bioconjugate Chem , 2006 . 17 958 - 966 . DOI:10.1021/bc060107xhttp://doi.org/10.1021/bc060107x .
Serizawa T, Satoshi Y, Akashi M . Biomacromolecules , 2001 . 2 469 - 475 . DOI:10.1021/bm000131shttp://doi.org/10.1021/bm000131s .
Kanai M, Mortell K H, Kiessling L L . J Am Chem Soc , 1997 . 119 9931 - 9932 . DOI:10.1021/ja972089nhttp://doi.org/10.1021/ja972089n .
Fan F, Cai C, Wang W, Gao L, Li J, Li J, Gu F, Sun T, Li J, Li C, Yu G . ACS Macro Lett , 2018 . 7 330 - 335 . DOI:10.1021/acsmacrolett.8b00056http://doi.org/10.1021/acsmacrolett.8b00056 .
Ting, S R S, Min, E H, Escale P, Save M, Billon L, Stenzel M H . Macromolecules , 2009 . 42 9422 - 9434 . DOI:10.1021/ma9019015http://doi.org/10.1021/ma9019015 .
Song W, Xiao C, Cui L.. Tang Z, Zhuang X, Chen X. . Colloid Surface B , 2012 . 93 188 - 194 . DOI:10.1016/j.colsurfb.2012.01.002http://doi.org/10.1016/j.colsurfb.2012.01.002 .
Chen Y, Chen G, Stenzel M H . Macromolecules , 2010 . 43 8109 - 8114 . DOI:10.1021/ma100919xhttp://doi.org/10.1021/ma100919x .
Allen M J, Wangkanont K, Raines R T, Kiessling L L . Macromolecules , 2009 . 42 4023 - 4027 . DOI:10.1021/ma900056bhttp://doi.org/10.1021/ma900056b .
Medina J M, Ko J H, Maynard H D, Garg, N K . Macromolecules , 2017 . 50 580 - 586 . DOI:10.1021/acs.macromol.6b02376http://doi.org/10.1021/acs.macromol.6b02376 .
Thompson M P, Randolph L M, James C R, Davalos A N, Hahn M E, Gianneschi N C . Polym Chem , 2014 . 5 1954 - 1964 . DOI:10.1039/C3PY01338Chttp://doi.org/10.1039/C3PY01338C .
Ladmiral V, Mantovani G, Clarkson G J, Cauet S, Irwin J L, Haddleton D M . J Am Chem Soc , 2006 . 128 4823 - 4830 . DOI:10.1021/ja058364khttp://doi.org/10.1021/ja058364k .
Loka R S, Mcconnell M S, Nguyen H M . Biomacromolecules , 2015 . 16 4013 - 4021 . DOI:10.1021/acs.biomac.5b01380http://doi.org/10.1021/acs.biomac.5b01380 .
Gordon E J, Gestwicki J E, Strong L E, Kiessling L L . Chem Bio , 2000 . 7 9 - 16 . DOI:10.1016/S1074-5521(00)00060-0http://doi.org/10.1016/S1074-5521(00)00060-0 .
Manning D D, Xu X, Beck P, Kiessling L L . J Am Chem Soc , 1997 . 119 3161 - 3162 . DOI:10.1021/ja964046xhttp://doi.org/10.1021/ja964046x .
Cairo C W, Gestwicki J E, Kanai M, Kiessling L L . J Am Chem Soc , 2002 . 124 1615 - 1619 . DOI:10.1021/ja016727khttp://doi.org/10.1021/ja016727k .
Fan F, Cai C, Gao L, Li J, Zhang P, Li L, Li C, Yu G . Polym Chem , 2017 . 8 6709 - 6719 . DOI:10.1039/C7PY01415Ehttp://doi.org/10.1039/C7PY01415E .
Lowe A B, Liu M, Van H J, Burford R P . Macromol. Rapid Commun , 2014 . 35 391 - 404 . DOI:10.1002/marc.v35.4http://doi.org/10.1002/marc.v35.4 .
Liu M, Hensbergen J V, Burford R P, Lowe A B . Polym Chem , 2012 . 3 1647 - 1658 . DOI:10.1039/c2py20155khttp://doi.org/10.1039/c2py20155k .
van Hensbergen J A, Liu M N, Burford R P, Lowe A B . J Mater Chem C , 2015 . 3 693 - 702 . DOI:10.1039/C4TC01971Ghttp://doi.org/10.1039/C4TC01971G .
Kang B, Okwieka P, Schoettler S, Winzen S, Langhanki J, Mohr K, Wurm F R . Angew Chem , 2015 . 54 7436 - 7740 . DOI:10.1002/anie.v54.25http://doi.org/10.1002/anie.v54.25 .
Percec V, Leowanawat P, Sun H J, Kulikov O, Nusbaum C D, Tran T M, Bertin A, Wilson D A, Peterca M, Zhang S, Kamat N P, Vargo K, Moock D, Johnston E D, Hammer D A, Pochan D J, Chen Y, Chabre Y M, Shiao T C, Bergeron-Brlek M, Andre S, Roy R, Gabius H J, Heiney P A. . J Am Chem Soc , 2013 . 135 9055 - 9077.
García V S, Delso I, Merino P, Tejero T . Synthesis , 2016 . 48 3339 - 3351 . DOI:10.1055/s-0035-1562500http://doi.org/10.1055/s-0035-1562500 .
Li Y, Zhou Y, Zhou Y, Yu Q, Zhu J, Zhou N, Zhang Z, Zhu X . React Funct Polym , 2017 . 116 41 - 48 . DOI:10.1016/j.reactfunctpolym.2017.05.003http://doi.org/10.1016/j.reactfunctpolym.2017.05.003 .
Liu M, Burford R P, Lowe A B . Polym Int , 2014 . 63 1174 - 1183 . DOI:10.1002/pi.2014.63.issue-7http://doi.org/10.1002/pi.2014.63.issue-7 .
Kose M M, Onbulak S, Yilmaz I I, Sanyal A . Macromolecules , 2011 . 44 2707 - 2714 . DOI:10.1021/ma200593rhttp://doi.org/10.1021/ma200593r .
Eissa A M, Khosravi E . Macromol Chem Phys , 2015 . 216 964 - 976 . DOI:10.1002/macp.v216.9http://doi.org/10.1002/macp.v216.9 .
Ma P, Liu S, Huang Y, Chen X, Zhang L, Jing X . Biomaterials , 2010 . 31 2646 - 2654 . DOI:10.1016/j.biomaterials.2009.12.019http://doi.org/10.1016/j.biomaterials.2009.12.019 .
Xue H, Peng L, Dong Y, Zheng Y Q, Luan Y, Hu X, Chen G, Chen H . RSC Adv , 2017 . 7 8484 - 8490 . DOI:10.1039/C6RA28763Hhttp://doi.org/10.1039/C6RA28763H .
Lu J, Fu C K, Wang S, Tao L, Yuan L, Haddleton D M, Chen G, Wen Y . Macromolecules , 2014 . 47 4676 - 4683 . DOI:10.1021/ma500664uhttp://doi.org/10.1021/ma500664u .
0
Views
21
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution