浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学院大学 北京 100049
Published:2018-12,
Received:29 July 2018,
Revised:25 September 2018,
扫 描 看 全 文
Yong-jin Ruan, Yu-yuan Lu, Li-jia An. Tube Model. [J]. Acta Polymerica Sinica 0(12):1493-1506(2018)
Yong-jin Ruan, Yu-yuan Lu, Li-jia An. Tube Model. [J]. Acta Polymerica Sinica 0(12):1493-1506(2018) DOI: 10.11777/j.issn1000-3304.2018.18172.
高分子非线性流变学是发展高效、节能高分子材料及其加工技术的学科基础. 针对缠结高分子流体,de Gennes、Doi和Edwards基于单链平均场近似建立了“管子模型”. 该模型奠定了现代高分子流体非线性流变学的基础,标志着人类描述缠结高分子流体步入了分子流变学时代. 然而,“管子模型”过于简化的物理图像无法基于分子链本身和第一性原理,处理快速大形变条件下缠结高分子流体非线性流变学的一些问题;另一方面,“管子模型”无法统一描述近期的一些流变学实验现象. 这就需要重新考虑现有的单链平均场假设和多链相互作用,建立分子流变学的新范式. 本文介绍了“管子模型”及其修正理论的基本物理图像、概念及其发展历程,给出了该模型中核心方程的推导过程及其参数的物理意义,最后,对该领域的未来发展趋势以及面临的机遇和挑战进行了简明扼要的展望. 希望通过本文能够加深读者对“管子模型”的认识和理解.
Nonlinear rheology for polymers is the foundational science underlying high efficiency and energy-saving processing of polymeric materials. For chainlike polymers
complicated interchain interactions affect their dynamics and determine the structure-processing-property relationship. This interaction is often called the entanglement
and becomes the key issue in polymer rheology. To our knowledge
the rheological behavior of entangled polymers is based on the de Gennes-Doi-Edwards tube model (DE theory)
which reduces the many-chain interaction into a smooth confining tube and assumes the test chain undergoes the Rouse dynamics inside the tube. Some predictions based on the DE theory are in agreement with rheological results
for instance
the time-strain separated form of the reduced relaxation modulus. To overcome some obvious disadvantages and provide reasonable results
many improvements and refinements have also been made to the DE theory. However
the tube model is only an essential single-chain mean-field theory since its intuitive molecular picture is too simple the theory cannot be derived from first principles and lacks self-consistency. In brief
the tube model does not describe how entanglement arises and cannot address the problem of when
how
and why disentanglement occurs after the external deformation. The model is inadequate in describing the chain conformation under fast and large deformations
and fails to explain a number of experimental observations in recent studies
such as the shear banding and the nonquiescent relaxation which show remarkable strain localization phenomena. Therefore
it is necessary to reexamine the single-chain mean-field assumptions and to consider the many-chain interactions explicitly. In other words
the chain entanglement may involve active localized intermolecular interactions that should be preceived as network junctions
and the critical picture of barrier-free Rouse retraction is questionable. In this article
we provide a general introduction to the original tube model and its subsequent improvements
with an emphasis on the development
basic assumptions
and key concepts. We provide derivation of some key results and explain the physical meaning of the parameters. The article ends with an outlook of the challenges and opportunities in the theory for polymer rheology
hoping to motivate researchers to working on this field.
非线性流变学管子模型缠结高分子流体GLaMM理论单链平均场理论
Non-linear rheologyTube modelEntangled polymersGLaMM theorySingle-chain mean-field theory
Doi M, Edwards S F. The Theory of Polymer Dynamics. New York: Oxford University Press, 1986. 1 – 20, 188 – 283
Dealy J M, Larson R G. Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again. Munich: Hanser Publishers, 2006. 91 – 126, 193 – 229, 329 – 400, 415 – 464
Rubinstein M, Colby R H, Polymer Physics. New York: Oxford University Press, 2003. 30 − 53, 197 − 252
Wang Shiqing(王十庆) . 中国科学-化学 , Sci China Chem , 2010 . 53 ( 1 ): 151 - 156.
Kalathi J T, Kumar S K, Rubinstein M, Grest G S . Macromolecules , 2014 . 47 ( 19 ): 6925 - 6931 . DOI:10.1021/ma500900bhttp://doi.org/10.1021/ma500900b .
Casale A, Porter R S, Johnson J F . Polym Rev , 1971 . 5 ( 2 ): 387 - 408.
Berry G C, Fox T G . Adv Polym Sci , 1968 . 5 261 - 357.
Lodge T P . Phys Rev Lett , 1999 . 83 ( 16 ): 3218 - 3221 . DOI:10.1103/PhysRevLett.83.3218http://doi.org/10.1103/PhysRevLett.83.3218 .
de Gennes P G . J Chem Phys , 1971 . 55 ( 2 ): 572 - 579 . DOI:10.1063/1.1675789http://doi.org/10.1063/1.1675789 .
Doi M, Edwards S F . J Chem Soc, Faraday Trans 2 , 1978 . 74 1789 - 1801 . DOI:10.1039/F29787401789http://doi.org/10.1039/F29787401789 .
Doi M, Edwards S F . J Chem Soc, Faraday Trans 2 , 1978 . 74 1802 - 1817 . DOI:10.1039/F29787401802http://doi.org/10.1039/F29787401802 .
Doi M, Edwards S F . J Chem Soc, Faraday Trans 2 , 1978 . 74 1818 - 1832 . DOI:10.1039/F29787401818http://doi.org/10.1039/F29787401818 .
Doi M, Edwards S F . J Chem Soc, Faraday Trans 2 , 1979 . 75 38 - 54 . DOI:10.1039/F29797500038http://doi.org/10.1039/F29797500038 .
Graham R S, Likhtman A E, McLeish T C B, Milner S T . J Rheol , 2003 . 47 ( 5 ): 1171 - 1200 . DOI:10.1122/1.1595099http://doi.org/10.1122/1.1595099 .
Wang S-Q, Wang Y, Cheng S, Li X, Zhu X, Sun H . Macromolecules , 2013 . 46 ( 8 ): 3147 - 3159 . DOI:10.1021/ma300398xhttp://doi.org/10.1021/ma300398x .
Lu Yuyuan(卢宇源), An Lijia(安立佳), Wang Jian(王健) . 高分子学报 , Acta Polymerica Sinica , 2016 . ( 6 ): 688 - 697.
Kaye A, Non-Newtonian Flow in Incompressible Fluids. Cranford: College of Aeronautics Press, 1962. 4 – 16
Bernstein B, Kearsley E A, Zapas L J . Trans Soc Rheol , 1963 . 7 391 - 410 . DOI:10.1122/1.548963http://doi.org/10.1122/1.548963 .
Larson R G, Constitutive Equations for Polymer Melts and Solutions. Stoneham: Butterworth Publishers, 1988. 29 – 49
Green M S, Tobolsky A V . J Chem Phys , 1946 . 14 ( 2 ): 80 - 92 . DOI:10.1063/1.1724109http://doi.org/10.1063/1.1724109 .
Lodge A S . Rheol Acta , 1968 . 7 ( 4 ): 379 - 392 . DOI:10.1007/BF01984856http://doi.org/10.1007/BF01984856 .
Doi M . J Polym Sci, Part B: Polym Phys , 1983 . 21 ( 5 ): 667 - 684 . DOI:10.1002/pol.1983.180210501http://doi.org/10.1002/pol.1983.180210501 .
Milner S, McLeish T . Phys Rev Lett , 1998 . 81 ( 3 ): 725 - 728 . DOI:10.1103/PhysRevLett.81.725http://doi.org/10.1103/PhysRevLett.81.725 .
Viovy J L, Rubinstein M, Colby R H . Macromolecules , 1991 . 24 ( 12 ): 3587 - 3596 . DOI:10.1021/ma00012a020http://doi.org/10.1021/ma00012a020 .
Rubinstein M, Colby R H . J Chem Phys , 1988 . 89 ( 8 ): 5291 - 5306 . DOI:10.1063/1.455620http://doi.org/10.1063/1.455620 .
Ianniruberto G, Marrucci G . J Non-Newton Fluid Mech , 1996 . 65 ( 2 ): 241 - 246.
Marrucci G . J Non-Newton Fluid Mech , 1996 . 62 ( 2-3 ): 279 - 289 . DOI:10.1016/0377-0257(95)01407-1http://doi.org/10.1016/0377-0257(95)01407-1 .
Likhtman A E, Milner S T, McLeish T C B . Phys Rev Lett , 2000 . 85 ( 21 ): 4550 - 4553 . DOI:10.1103/PhysRevLett.85.4550http://doi.org/10.1103/PhysRevLett.85.4550 .
Milner S T, McLeish T C B, Likhtman A E . J Rheol , 2001 . 45 ( 2 ): 539 - 563 . DOI:10.1122/1.1349122http://doi.org/10.1122/1.1349122 .
Ruan Yongjin(阮永金), Wang Zhenhua(王振华), Lu Yuyuan(卢宇源), An Lijia(安立佳) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 5 ): 727 - 743.
Edwards S F . Proc Phys Soc , 1967 . 92 ( 575 ): 9 - 16.
Edwards S F . British Polym J , 1977 . 9 ( 2 ): 140 - 143 . DOI:10.1002/(ISSN)1934-256Xhttp://doi.org/10.1002/(ISSN)1934-256X .
Rouse P E . J Chem Phys , 1953 . 21 ( 7 ): 1272 - 1280 . DOI:10.1063/1.1699180http://doi.org/10.1063/1.1699180 .
Likhtman A E, Sukumaran S K, Ramirez J . Macromolecules , 2007 . 40 ( 18 ): 6748 - 6757 . DOI:10.1021/ma070843bhttp://doi.org/10.1021/ma070843b .
Onogi S, Masuda T, Kitagawa K . Macromolecules , 1970 . 3 ( 2 ): 109 - 116 . DOI:10.1021/ma60014a001http://doi.org/10.1021/ma60014a001 .
Osaki K, Kurata M . Macromolecules , 1980 . 13 ( 3 ): 671 - 676 . DOI:10.1021/ma60075a036http://doi.org/10.1021/ma60075a036 .
Osaki K, Nishizawa K, Kurata M . Macromolecules , 1982 . 15 ( 4 ): 1068 - 1071 . DOI:10.1021/ma00232a021http://doi.org/10.1021/ma00232a021 .
Archer L A . J Rheol , 1999 . 43 ( 6 ): 1555 - 1571 . DOI:10.1122/1.551060http://doi.org/10.1122/1.551060 .
Archer L A, Sanchez-Reyes J, Juliani . Macromolecules , 2002 . 35 ( 27 ): 10216 - 10224 . DOI:10.1021/ma021286qhttp://doi.org/10.1021/ma021286q .
Tanner R I . Trans Soc Rheol , 1973 . 17 ( 2 ): 365 - 373 . DOI:10.1122/1.549317http://doi.org/10.1122/1.549317 .
Gao H W, Ramachandran S, Christiansen E B . J Rheol , 1981 . 25 ( 2 ): 213 - 235 . DOI:10.1122/1.549617http://doi.org/10.1122/1.549617 .
Likhtman A E, McLeish T C B . Macromolecules , 2002 . 35 ( 16 ): 6332 - 6343 . DOI:10.1021/ma0200219http://doi.org/10.1021/ma0200219 .
Graham R S, Henry E P, Olmsted P D . Macromolecules , 2013 . 46 ( 24 ): 9849 - 9854 . DOI:10.1021/ma401183whttp://doi.org/10.1021/ma401183w .
Auhl D, Ramirez J, Likhtman A E, Chambon P, Fernyhough C . J Rheol , 2008 . 52 ( 3 ): 801 - 835 . DOI:10.1122/1.2890780http://doi.org/10.1122/1.2890780 .
Lodge A S . Rheol Acta , 1989 . 28 ( 5 ): 351 - 362 . DOI:10.1007/BF01336802http://doi.org/10.1007/BF01336802 .
Ravindranath S, Wang S Q . Macromolecules , 2007 . 40 ( 22 ): 8031 - 8039 . DOI:10.1021/ma071495ghttp://doi.org/10.1021/ma071495g .
Cheng S, Lu Y, Liu G, Wang S Q . Soft Matter , 2016 . 12 ( 14 ): 3340 - 3351 . DOI:10.1039/C6SM00142Dhttp://doi.org/10.1039/C6SM00142D .
Wang S Q, Ravindranath S, Boukany P, Olechnowicz M, Quirk R P, Halasa A, Mays J . Phys Rev Lett , 2006 . 97 ( 18 ): 187801(1-4) .
Boukany P E, Wang S Q, Wang X. . Macromolecules , 2009 . 42 ( 16 ): 6261 - 6269 . DOI:10.1021/ma9004346http://doi.org/10.1021/ma9004346 .
Lu Yuyuan(卢宇源), Li Liangbin(李良彬), Yu Wei(俞炜), An Lijia(安立佳) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 12 ): 1558 - 1562 . DOI:10.11777/j.issn1000-3304.2018.18170http://doi.org/10.11777/j.issn1000-3304.2018.18170 .
Wang S Q. Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation. Hoboken: John Wiley & Sons, 2018. 4 – 415
Inoue T, Uematsu T, Yamashita Y, Osaki K . Macromolecules , 2002 . 35 ( 12 ): 4718 - 4724 . DOI:10.1021/ma012149ghttp://doi.org/10.1021/ma012149g .
Huang Q, Hengeller L, Alvarez N J, Hassager O . Macromolecules , 2015 . 48 ( 12 ): 4158 - 4163 . DOI:10.1021/acs.macromol.5b00849http://doi.org/10.1021/acs.macromol.5b00849 .
Nielsen J K, Hassager O, Rasmussen H K, McKinley G H . J Rheol , 2009 . 53 ( 6 ): 1327 - 1346 . DOI:10.1122/1.3208073http://doi.org/10.1122/1.3208073 .
Wang Z, Lam C N, Chen W R, Wang W, Liu J, Liu Y, Porcar L, Stanley C B, Zhao Z, Hong K, Wang Y . Phys Rev X , 2017 . 7 ( 3 ): 031003(1-16) .
Xu W S, Carrillo J M Y, Lam C N, Sumpter B G, Wang Y. . ACS Macro Lett , 2018 . 7 ( 2 ): 190 - 195 . DOI:10.1021/acsmacrolett.7b00900http://doi.org/10.1021/acsmacrolett.7b00900 .
Hsu H P, Kremer K . ACS Macro Lett , 2017 . 7 ( 1 ): 107 - 111.
Kröger M, Hess S . Phys Rev Lett , 2000 . 85 ( 5 ): 1128 - 1131 . DOI:10.1103/PhysRevLett.85.1128http://doi.org/10.1103/PhysRevLett.85.1128 .
Kremer K, Grest G S . J Chem Phys , 1990 . 92 ( 8 ): 5057 - 5086 . DOI:10.1063/1.458541http://doi.org/10.1063/1.458541 .
0
Views
78
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution