Lignin a commonly used modifier for bio-based PLA materials due to its good biodegradability
structural stability
and the nature of biomacromolecule. However
the poor compatibility between neat lignin and PLA matrix compromises greatly its further application. To this end
lignin-
g
-polyester with two different molecular structures
i.e.
lignin-
g
-PDVL-
ran
-PLLA and lignin-
g
-PDVL-
b
-PLLA
were specially designed for compatibility improvement and successfully synthesized
via
ring-opening polymerization with
δ
-valerolactone (DVL) and L-lactone (L-LA). PDVL as a soft component could reduce the brittleness of PLA with its long polymer chains while L-LA would enhance the compatibility between lignin nanofillers and PLA matrix due to the structural similarity with PLA. Lignin-
g
-polyester fillers with various segment structures were prepared by tuning the monomer ratio
and a series of PLA/lignin-
g
-polyester composites with different filler contents were further fabricated
via
the solution casting method. Structures of lignin-
g
-polyester were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (
1
H-NMR)
while the uniform dispersion of lignin-
g
-polyester fillers in PLA composites was verified by field emission scanning electron microscopy (FE-SEM). Differential scanning calorimetry (DSC) was utilized to study the thermal properties and crystallization behaviors of as-fabricated composites
which indicated a boosted crystallization with improved crystallinity with the addition of nanofillers. Furthermore
lignin-
g
-PDVL-
ran
-PLLA outperformed lignin-
g
-PDVL-
b
-PLLA in terms of the facilitation effect. Mechanical testing showed that PLA/lignin-
g
-polyester composites possessed better mechanical properties than neat PLA did
which could result from the multiple effects induced by holes and wrinkles that formed between lignin-
g
-polyester nanofillers and PLA matrix during the stretching process. In contrast to DSC results
the mechanical properties of PLA/lignin-
g
-PDVL-
b
-PLLA composites were much better than those of PLA/lignin-
g
-PDVL-
ran
-PLLA composites. In addition
the UV-Vis transmission spectroscopy suggested that lignin-
g
-polyester could endow the composites with an excellent UV-shielding property.
Müller P, Bere J, Fekete E, Móczó J, Nagy B, Kállay M, Gyarmati B, Pukánszky B . Polymer , 2016 . 103 9 - 18 . DOI:10.1016/j.polymer.2016.09.031http://doi.org/10.1016/j.polymer.2016.09.031 .
Ma P, Jiang L, Xu P, Dong W, Chen M, Lemstra P J . Biomacromolecules , 2015 . 16 ( 11 ): 3723 - 3729 . DOI:10.1021/acs.biomac.5b01135http://doi.org/10.1021/acs.biomac.5b01135 .
Muiruri J K, Liu S, Teo W S, Kong J, He C. . ACS Sustain Chem Eng , 2017 . 5 ( 5 ): 3929 - 3937 . DOI:10.1021/acssuschemeng.6b03123http://doi.org/10.1021/acssuschemeng.6b03123 .
Gupta A, Katiyar V . ACS Sustain Chem Eng , 2017 . 5 ( 8 ): 6835 - 6844 . DOI:10.1021/acssuschemeng.7b01059http://doi.org/10.1021/acssuschemeng.7b01059 .
Spinella S, Cai J, Samuel C, Zhu J, McCallum S A, Habibi Y, Raquez J M, Dubois P, Gross R A . Biomacromolecules , 2015 . 16 ( 6 ): 1818 - 1826 . DOI:10.1021/acs.biomac.5b00394http://doi.org/10.1021/acs.biomac.5b00394 .
Moustafa H, Kissi El, N, Abou-Kandil A I, Abdel-Aziz M S, Dufresne A . ACS Appl Mater Interfaces , 2016 . 9 ( 23 ): 20132 - 20141.
Zhang K, Nagarajan V, Misra M, Mohanty A K . ACS Appl Mater Interfaces , 2014 . 6 ( 15 ): 12436 - 12448 . DOI:10.1021/am502337uhttp://doi.org/10.1021/am502337u .
Meng X, Nguyen N, Tekinalp H, Lara-Curzio E, Ozcan S . ACS Sustain Chem Eng , 2017 . 6 ( 1 ): 1289 - 1298.
Gu J, Xiao P, Chen P, Zhang L, Wang H, Dai L, Song L, Huang Y, Zhang J, Chen T . ACS Appl Mater Interfaces , 2017 . 9 ( 7 ): 5968 - 5973 . DOI:10.1021/acsami.6b13547http://doi.org/10.1021/acsami.6b13547 .
Zhao T H, Wu Y, Li YD, Wang M, Zeng J B . ACS Sustain Chem Eng , 2017 . 5 ( 2 ): 1938 - 1947 . DOI:10.1021/acssuschemeng.6b02684http://doi.org/10.1021/acssuschemeng.6b02684 .
Kai D, Tan M J, Chee P L, Chua Y K, Yap Y L, Loh X J . Green Chem , 2016 . 18 ( 5 ): 1175 - 1200 . DOI:10.1039/C5GC02616Dhttp://doi.org/10.1039/C5GC02616D .
Wang C, Kelley S S, Venditti R A . ChemSusChem , 2016 . 9 ( 8 ): 770 - 783 . DOI:10.1002/cssc.201501531http://doi.org/10.1002/cssc.201501531 .
Ge Y, Li Z . ACS Sustain Chem Eng , 2018 . 6 7181 - 7192 . DOI:10.1021/acssuschemeng.8b01345http://doi.org/10.1021/acssuschemeng.8b01345 .
Li J, He Y, Inoue Y . Polym Int , 2003 . 52 ( 6 ): 949 - 955 . DOI:10.1002/(ISSN)1097-0126http://doi.org/10.1002/(ISSN)1097-0126 .
Atz D T, Couve J, Gimello O, Mas A, Robin J J . Polymer , 2017 . 118 280 - 296 . DOI:10.1016/j.polymer.2017.04.036http://doi.org/10.1016/j.polymer.2017.04.036 .
Chung Y L, Olsson J V, Li R J, Frank, C W, Waymouth R M, Billington S L, Sattely E S . ACS Sustain Chem Eng , 2013 . 1 ( 10 ): 1231 - 1238 . DOI:10.1021/sc4000835http://doi.org/10.1021/sc4000835 .
Liu H, Chung H . Macromolecules , 2016 . 49 ( 19 ): 7246 - 7256 . DOI:10.1021/acs.macromol.6b01028http://doi.org/10.1021/acs.macromol.6b01028 .
Yu J, Wang J, Wang C, Liu Y, Xu Y, Tang C, Chu F . Macromol Rapid Commun , 2015 . 36 ( 4 ): 398 - 404 . DOI:10.1002/marc.v36.4http://doi.org/10.1002/marc.v36.4 .
Wang Y, Su J, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W . ACS Appl Mater Interfaces , 2017 . 9 ( 41 ): 36281 - 36289 . DOI:10.1021/acsami.7b08763http://doi.org/10.1021/acsami.7b08763 .
Sun Y, Yang L, Lu X, He C . J Mater Chem A , 2015 . 3 ( 7 ): 3699 - 3709 . DOI:10.1039/C4TA05991Chttp://doi.org/10.1039/C4TA05991C .
Wei L, Agarwal U P, Matuana L, Sabo R C, Stark N M . Polymer , 2018 . 135 305 - 313 . DOI:10.1016/j.polymer.2017.12.039http://doi.org/10.1016/j.polymer.2017.12.039 .
Wang M, Wu Y, Li Y D, Zeng J B . Polym Rev , 2017 . 57 ( 4 ): 1 - 37.
Preparation and Application of Lignin Grafted Natural Rubber Initiated by CaCl2/H2O2
Ring-opening Copolymerization of L-Lactide and δ-Valerolactone Catalyzed by Benzoxazolyl Urea Catalyst/MTBD
Preparation of Sodium Lignin Sulfonate Modified Polysulfone Membranes and Their Use as Supports for Forward Osmosis Membranes
Preparation and Photoresponsive Properties of Lignin-graft Azobenzene-Containing Liquid Crystalline Copolymers
Related Author
No data
Related Institution
Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University
Faculty of Materials Science and Chemical Engineering, Ningbo University
Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology