Chen Lin, Xu-ming Xie. Preparation of GO/PMMA Nanocomposites with Significantly Increased Properties through Metal Ion Coordination. [J]. Acta Polymerica Sinica 50(2):170-178(2019)
DOI:
Chen Lin, Xu-ming Xie. Preparation of GO/PMMA Nanocomposites with Significantly Increased Properties through Metal Ion Coordination. [J]. Acta Polymerica Sinica 50(2):170-178(2019) DOI: 10.11777/j.issn1000-3304.2018.18178.
Preparation of GO/PMMA Nanocomposites with Significantly Increased Properties through Metal Ion Coordination
Metal ion coordinated GO/PMMA composites have been prepared by melt method. The interfacial interaction between the nanofiller and the polymer matrix is significantly increased due to the coordination bonding. As a result
the mechanical and thermal properties of the composites are highly improved. To study the property variation with the change of metal ions and preparation methods
two different metal ions (Cu(II) and Fe(III)) were added into the GO/PMMA system
respectively
and the composites were prepared by two different methods—the direct-melt method and the master-batch method. Fourier transform infrared spectroscopy (FTIR)
Raman spectra
X-ray diffraction (XRD)
scanning electron microscopy (SEM)
tensile test
and thermogravimetic analysis (TGA) were performed to study the structures and properties of the composites. The FTIR results showed that GO and PMMA are successfully bridged
via
coordination bonding
for the characteristic peaks showed obvious blue shifts. Raman spectra indicated that coordination causes no extra defect to the GO sheets. SEM images showed that the GO sheets could be homogeneously dispersed in PMMA through master-batch method
while a poor dispersion through direct-melt method. From the tensile test results
it could be seen that the composites prepared by master-batch method had a better mechanical performance than those prepared by direct-melt method because of the different dispersion states. Fe(III)-coordinated composites have better mechanical performance than Cu(II)-coordinated composites do
due to the higher valence state of iron ions. The Young’s modulus and tensile strength of Fe(III)-0.5 wt% GO/PMMA composite are 29.6% and 31.8%
respectively
higher than those of the composite with only GO
and 75.0% and 35.7%
respectively
higher than those of neat PMMA. The temperature of maximum weight loss of Fe(III)-0.5 wt% GO/PMMA is 26 °C higher than that of GO/PMMA
and 82 °C higher than that of neat PMMA. This metal ion coordination method is efficient and simple
and can easily bridge nanofillers and polymer matrixes containing polar groups. This approach opens up a new strategy for improving the performance of many kinds of nanocomposites.
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science , 2004 . 306 666 - 669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Nair R, Blake P, Grigorenko A, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K . Science , 2008 . 320 1308 - 1308 . DOI:10.1126/science.1156965http://doi.org/10.1126/science.1156965 .
Ziegler K . Phys Rev B , 2007 . 75 233407 DOI:10.1103/PhysRevB.75.233407http://doi.org/10.1103/PhysRevB.75.233407 .
Weitz R T, Yacoby A . Nat Nanotechnol , 2010 . 5 699 - 700 . DOI:10.1038/nnano.2010.201http://doi.org/10.1038/nnano.2010.201 .
Geim A K . Science , 2009 . 324 1530 - 1534 . DOI:10.1126/science.1158877http://doi.org/10.1126/science.1158877 .
Jiang L, Shen X P, Wu J L, Shen K C . J Appl Polym Sci , 2010 . 118 275 - 279 . DOI:10.1002/app.v118:1http://doi.org/10.1002/app.v118:1 .
Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J H, Lee Y H . Adv Funct Mater , 2009 . 19 1987 - 1992 . DOI:10.1002/adfm.v19:12http://doi.org/10.1002/adfm.v19:12 .
Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J . J Phys Chem C , 2008 . 112 8192 - 8195 . DOI:10.1021/jp710931hhttp://doi.org/10.1021/jp710931h .
Pham V H, Cuong T V. Nguyen-phan T D, Pham D H, Kim E J, Hur S H, Shin E W, Kim S, Chung J S. . Chem Commun , 2010 . 46 4375 - 4377 . DOI:10.1039/c0cc00363hhttp://doi.org/10.1039/c0cc00363h .
Xu Y, Hong W, Bai H, Li C, Shi G . Carbon , 2009 . 47 3538 - 3543 . DOI:10.1016/j.carbon.2009.08.022http://doi.org/10.1016/j.carbon.2009.08.022 .
Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y . Adv Funct Mater , 2009 . 19 2297 - 2302 . DOI:10.1002/adfm.v19:14http://doi.org/10.1002/adfm.v19:14 .
Yu D S, Kuila T, Kim N H, Lee J H . Chem Eng J , 2014 . 245 311 - 322 . DOI:10.1016/j.cej.2014.02.025http://doi.org/10.1016/j.cej.2014.02.025 .
Chen J, Li Y, Zhang Y, Zhu Y . J Appl Polym Sci , 2015 . 132 42000 .
Lin C, Liu Y T, Xie X M . Aust J Chem , 2014 . 67 121 - 126 . DOI:10.1071/CH13339http://doi.org/10.1071/CH13339 .
Pan L, Liu Y T, Xie X M, Zhu X D . Chem Asian J , 2014 . 9 1519 - 1524 . DOI:10.1002/asia.v9.6http://doi.org/10.1002/asia.v9.6 .
Bai H, Li C, Wang X, Shi G . J Phys Chem C , 2011 . 115 5545 - 5551.
Zhong M, Liu X Y, Shi F K, Zhang L Q, Wang X P, Cheetham A G, Cui H G, Xie X M . Soft Matter , 2015 . 11 4235 - 4241 . DOI:10.1039/C5SM00493Dhttp://doi.org/10.1039/C5SM00493D .
Liu Y T, Feng Q P, Xie X M, Xe X Y . Carbon , 2011 . 49 3371 - 3375 . DOI:10.1016/j.carbon.2011.03.055http://doi.org/10.1016/j.carbon.2011.03.055 .
Goncalves G, Marques P A A P, Timmons A B, Bdkin I, Singh M K, Emami N, Gracio J . J Mater Chem , 2010 . 20 9927 - 9934 . DOI:10.1039/c0jm01674hhttp://doi.org/10.1039/c0jm01674h .
Zhong M, Liu Y T, Xie X M . J Mater Chem B , 2015 . 3 4001 - 4008 . DOI:10.1039/C5TB00075Khttp://doi.org/10.1039/C5TB00075K .
Liu Y T, Tan Z, Xie X M, Wang Z F, Ye X Y . Chem Asian J , 2013 . 8 817 - 823 . DOI:10.1002/asia.v8.4http://doi.org/10.1002/asia.v8.4 .
Jurow M, Manichev V, Pabon C, Hageman B, Matolina Y, Drain C M . Inorg Chem , 2013 . 52 10576 - 10582 . DOI:10.1021/ic401563fhttp://doi.org/10.1021/ic401563f .
Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S . ACS Nano , 2008 . 2 572 - 578 . DOI:10.1021/nn700349ahttp://doi.org/10.1021/nn700349a .
Cong H P, Wang P, Yu S H . Small , 2014 . 10 448 - 453 . DOI:10.1002/smll.v10.3http://doi.org/10.1002/smll.v10.3 .
Cong H P, Wang P, Yu S H . Chem Mater , 2013 . 25 3357 - 3362 . DOI:10.1021/cm401919chttp://doi.org/10.1021/cm401919c .
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S . Carbon , 2007 . 45 1558 - 1565 . DOI:10.1016/j.carbon.2007.02.034http://doi.org/10.1016/j.carbon.2007.02.034 .
Shen J F, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M X . Chem Mater , 2009 . 21 3514 - 3520 . DOI:10.1021/cm901247thttp://doi.org/10.1021/cm901247t .
Dreyer D R, Park S, Bielawski C W, Ruoff R S . Chem Soc Rev , 2010 . 39 228 - 240 . DOI:10.1039/B917103Ghttp://doi.org/10.1039/B917103G .
Vuluga D, Thomassin J M, Molenberg I, Huynen I, Gilbert B, Jerome C, Alexandre M, Detrembleur C . Chem Commun , 2011 . 47 2544 - 2546 . DOI:10.1039/c0cc04623jhttp://doi.org/10.1039/c0cc04623j .
Study on Structure Design and Electromagnetic Shielding Properties of Polymer Nanocomposites
Thermal Treatment Effects on the Microstructure and Tensile Properties of Transparent Polyamides
In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization
Synthesis and Characterization of Poly(vinyl acetate)-g-polytetrahydrofuran Graft Copolymer with Silver Nanoparticles via Combination of Living Cationic Polymerization and Grafting-onto Approach
Preparation of Crosslinked Polystyrene Nanoparticles/Reduced Graphene Oxide Hybrids Using Electrostatic Self-assembly and Their Application in SBR
Related Author
No data
Related Institution
College of Materials Science & Engineering, Beijing University of Chemical Technology
College of Material Science and Engineering, Beijing Institute of Fashion Technology
CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing Laboratory of Biomedical Materials
State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology