Poly(styrene oxide) (PSO) macromonomers were synthesized in one step through the anionic ring-opening polymerization (ROP) of styrene oxide (SO) at room temperature
and 4-vinylbenzyl alcohol (VBA) as the functional initiator. The copolymerization of PSO macromonomers and methyl methacrylate (MMA) was carried out at different temperatures through free radical co-polymerization to prepare graft copolymers. The structures and properties of the functional initiator
the obtained macromonomers and the grafted copolymers were characterized by nuclear magnetic resonance spectroscopy (NMR)
gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results showed that functional initiator VBA was synthesized successfully. Super base
t
-BuP
4
displayed high catalytic activity for the ring-opening polymerization of SO
resulting in PSO macromonomers with polymerizable vinyl group
controlled molecular weight (
M
n
= 2700 – 11300 g/mol)
and narrow molecular weight distribution (
<
1.19). NMR measurement confirmed that the copolymerization of PSO macromonomers and MMA was carried out successfully to produce grafted copolymers. With the increase of copolymerization temperature
the conversion of MMA increased (
>
96%)
while the molecular weight of the copolymers decreased and the molecular weight distribution became narrow. The GPC curves of the product for the copolymerization before precipitation were bimodal
the molecular weight of the obtained polymers was low (6200 – 7800 g/mol) and the molecular weight distribution was wide (6.39 – 10.41). After precipitation
the GPC curves showed a unimodal signal
the molecular weight became larger (4.33 × 10
4
– 5.95 × 10
4
g/mol) and the molecular weight distribution became narrower (1.46 – 1.62). Integral calculation of the GPC curves and NMR measurement confirmed that there were about 3.8% – 4.6% inert components in the synthesized macromonomers. For the thermal analysis of PSO
PMMA-
g
-PSO and PMMA
the glass transition temperature (
T
g
) measured by DSC showed that the prepared grafted copolymer had only one
T
g
which was in good accordance with the theoretical value calculated according to the Fox equation. This result further proved that the graft copolymers were successfully prepared.
Zhang S S, Tezuka Y, Zhang Z B, Li N, Zhang W, Zhu X L . Polym Chem , 2018 . 9 ( 6 ): 677 - 686 . DOI:10.1039/C7PY01544Ehttp://doi.org/10.1039/C7PY01544E .
Feng C, Li Y J, Yang D, Hu J H, Zhang X H, Huang X Y . Chem Soc Rev , 2011 . 40 ( 3 ): 1282 - 1295 . DOI:10.1039/B921358Ahttp://doi.org/10.1039/B921358A .
Zeigler D F, Mazzio K A, Luscombe C K . Macromolecules , 2014 . 47 ( 15 ): 5019 - 5028 . DOI:10.1021/ma5009435http://doi.org/10.1021/ma5009435 .
Liang X Y, Liu Y J, Huang J, Wei L H, Wang G W . Polym Chem , 201 . 6 ( 3 ): 6466 - 6475.
Sun F X, Lu G L, Feng C, Li Y J, Huang X Y . Polym Chem , 2017 . 8 ( 2 ): 431 - 440 . DOI:10.1039/C6PY01595Fhttp://doi.org/10.1039/C6PY01595F .
Rooney T R, Monyatsi O, Hutchinson R A . Macromolecules , 2017 . 50 ( 3 ): 784 - 795 . DOI:10.1021/acs.macromol.6b02297http://doi.org/10.1021/acs.macromol.6b02297 .
Teo Y C, Xia Y . Macromolecules , 2015 . 48 ( 16 ): 5656 - 5662 . DOI:10.1021/acs.macromol.5b01176http://doi.org/10.1021/acs.macromol.5b01176 .
Zhao N, Ren C L, Li H K, Li Y X, Liu S F, Li Z B . Angew Chem Int Ed , 2017 . 129 ( 56 ): 13167 - 13170.
Li H K, Zhao N, Ren C L, Liu S F, Li Z B . Polym Chem , 2017 . 8 ( 47 ): 7369 - 7374 . DOI:10.1039/C7PY01673Ehttp://doi.org/10.1039/C7PY01673E .
Hu X, Zhang Y J, Cui G P, Zhu N, Guo K . Macromol Rapid Commun , 2017 . 38 ( 21 ): 1700399 DOI:10.1002/marc.v38.21http://doi.org/10.1002/marc.v38.21 .
Liu J J, Chen C, Li Z J, Wu W Z, Zhi X, Zhang Q G, Wu H, Wang X, Cui S, Guo K . Polym Chem , 2015 . 6 ( 20 ): 3754 - 3757 . DOI:10.1039/C5PY00508Fhttp://doi.org/10.1039/C5PY00508F .
Chen J L, Li M S, He W J, Tao Y H, Wang X H . Macromolecules , 2017 . 50 ( 23 ): 9128 - 9134 . DOI:10.1021/acs.macromol.7b02331http://doi.org/10.1021/acs.macromol.7b02331 .
Wang J, Li B X, Xin D H, Hu R R, Zhao Z J, Qin A J, Tang B Z . Polym Chem , 2017 . 8 ( 17 ): 2713 - 2722 . DOI:10.1039/C7PY00363Chttp://doi.org/10.1039/C7PY00363C .
Hong M, Tang X Y, Newell B S, Chen E Y X . Macromolecules , 2017 . 50 ( 21 ): 8469 - 8479 . DOI:10.1021/acs.macromol.7b02174http://doi.org/10.1021/acs.macromol.7b02174 .
Zhang H X, Hu S Y, Zhao J P, Zhang G Z . Macromolecules , 2017 . 50 ( 11 ): 4198 - 4205 . DOI:10.1021/acs.macromol.7b00599http://doi.org/10.1021/acs.macromol.7b00599 .
Zhang J, Liu Q, Ren H J, Zhang N J, Li P F, Yang K . J Mole Struc , 2017 . 1148 421 - 428 . DOI:10.1016/j.molstruc.2017.05.094http://doi.org/10.1016/j.molstruc.2017.05.094 .
Yang H J, Xu J B, Pispas S, Zhang G Z . Macromolecules , 2012 . 45 ( 8 ): 3312 - 3317 . DOI:10.1021/ma300291qhttp://doi.org/10.1021/ma300291q .
Yang H J, Bai T, Xue X Q, Huang W Y, Chen J H, Qian X L, Zhang G Z, Jiang B B . RSC Adv , 2015 . 5 ( 74 ): 60401 - 60408 . DOI:10.1039/C5RA09851Chttp://doi.org/10.1039/C5RA09851C .
Yang H J, Bai T, Xue X Q, Huang W Y, Chen J H, Qian X L, Zhang G Z, Jiang B B . Polymer , 2015 . 72 63 - 68 . DOI:10.1016/j.polymer.2015.06.048http://doi.org/10.1016/j.polymer.2015.06.048 .
Yang H J, Sun A B, Chai C Q, Huang W Y, Xue X Q, Chen J, Jiang B B . Polymer , 2017 . 121 256 - 261 . DOI:10.1016/j.polymer.2017.06.029http://doi.org/10.1016/j.polymer.2017.06.029 .
Hong M, Chen E Y . Angew Chem Int Ed , 2016 . 128 ( 13 ): 4188 - 4193.
Wang D, Hadjichristidis N . Chem Commun , 2017 . 53 ( 6 ): 1196 - 1199 . DOI:10.1039/C6CC09047Hhttp://doi.org/10.1039/C6CC09047H .
Qiao Z Y, Du F S, Zhang R, Liang D H, Li Z C . Macromolecules , 2010 . 43 ( 15 ): 6485 - 6494 . DOI:10.1021/ma101090ghttp://doi.org/10.1021/ma101090g .