浏览全部资源
扫码关注微信
1.南昌大学 化学学院
2.高分子及能源化学研究院 南昌 330031
Published:2019-1,
Published Online:11 December 2018,
Received:31 August 2018,
Revised:30 October 2018,
扫 描 看 全 文
You-di Zhang, Lai-tao Shi, Yi-wang Chen. Overview and Outlook of Random Copolymerization Strategy for Designing Polymer Solar Cells. [J]. Acta Polymerica Sinica 50(1):13-26(2019)
You-di Zhang, Lai-tao Shi, Yi-wang Chen. Overview and Outlook of Random Copolymerization Strategy for Designing Polymer Solar Cells. [J]. Acta Polymerica Sinica 50(1):13-26(2019) DOI: 10.11777/j.issn1000-3304.2018.18193.
近年来,有机聚合物太阳能电池获得了快速的发展,引起全球科研工作者的广泛关注. 目前,相比富勒烯聚合物太阳能电池,非富勒烯聚合物太阳能电池的能量转换效率(PCE)已经超过14%. 广泛研究的有机光伏(OPV)材料包括小分子和聚合物给体以及小分子和聚合物受体,但是,无规共轭聚合物给体和受体的研究相对较少. 基于此种情况,本文综述了以p-型无规共轭聚合物为电子给体、n-型三元共轭聚合物为电子受体的富勒烯/非富勒烯聚合物有机太阳能电池材料的最新研究进展,包括可溶液加工p-型和n-型无规共聚物有机光伏材料. 目前基于聚合物给体(PBDB-T)和无规共轭聚合物受体(PNDI-2T-TR)的全聚合物光伏效率最高达到8.13%,是到目前为止以无规共聚物为电子受体的全聚合物有机太阳能电池的最高能量转换效率之一,展现了很好的发展前景. 最后对无规共轭聚合物太阳能电池的未来发展做了展望和总结.
Organic polymer solar cells which have achieved rapid development in recent years
therefore
attract wide attention around the world. At present
compared with fullerene polymer solar cells
the energy conversion efficiency (PCE) of non-fullerene polymer solar cells has already exceeded 14%. Organic photovoltaic (OPV) materials were widely studied including small-molecule/polymer donors and small-molecule/polymer acceptors. However
the studies on random conjugated polymer donors and acceptors are relatively rare. By introducing the third component into D-A conjugated polymer system to construct random conjugated polymer donor or acceptor
the absorption and the electron orbital energy levels could be well adjusted
and the open-circuit voltage (
V
oc
)
short-circuit current density (
J
sc
)
and fill factor (FF) could be improved. Moreover
this strategy could also decrease the crystallinity of D-A polymer donor or acceptor availably
promoting the formation of better blend film morphology
appropriate phase separation size
and increase the electron or hole mobility. In order to adjust blend topography
the design and synthesis of molecular structures played an important role to improve the PCE of organic solar cells. Adding different ratios of electron-rich unit or electron-deficient unit to lower the strong crystallinity of polymers
which resulted in large phase separation
is not conducive to effective charge transport
thus reducing the efficiency of organic photovoltaics. Based on this situation
fullerene/non-fullerene polymer organic solar cells with p-type random conjugated polymer as electron donor and n-type ternary conjugated polymer as electron acceptor are summarized. At present
the total polymer photovoltaic efficiency based on the polymer donor (PBDB-T) and the random conjugated polymer acceptor (PNDI-2T-TR) reach up to 8.13%
which is one of the highest energy conversion efficiencies of polymer organic solar cells using the random copolymer as the electron acceptor so far
showing a good development prospect. Finally
the future development of the random conjugated polymer solar cells is summarized and prospected in this review.
无规共轭聚合物聚合物太阳能电池三元共聚物非富勒烯有机光伏
Random conjugated polymersPolymer solar cellsTernary conjugate polymersNon-fullerene organic photovoltaics
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J . Science , 1995 . 270 ( 5243 ): 1789 - 1791 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789 .
Li Y . Acc Chem Res , 2012 . 45 ( 5 ): 723 - 733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Thompson B C, Fréchet J M J . Angew Chem Int Ed , 2008 . 47 ( 1 ): 58 - 77 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Li G, Zhu R, Yang Y . Nat Photon , 2012 . 6 ( 3 ): 153 - 161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11 .
Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y . Nat Commun , 2018 . 9 ( 1 ): 743 DOI:10.1038/s41467-018-03207-xhttp://doi.org/10.1038/s41467-018-03207-x .
Zhang S, Qin Y, Zhu J, Hou J . Adv Mater , 2018 . 30 ( 20 ): 1800868 DOI:10.1002/adma.v30.20http://doi.org/10.1002/adma.v30.20 .
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J . J Am Chem Soc , 2017 . 139 ( 21 ): 7148 - 7151 . DOI:10.1021/jacs.7b02677http://doi.org/10.1021/jacs.7b02677 .
Kolhe N B, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe S A . Chem Mater , 2018 . 30 ( 18 ): 6540 - 6548 . DOI:10.1021/acs.chemmater.8b03229http://doi.org/10.1021/acs.chemmater.8b03229 .
You H, Kim D, Cho H H, Lee C, Chong S, Ahn N Y, Seo M, Kim J, Kim F S, Kim B J . Adv Funct Mater , 2018 . 28 ( 39 ): 1803613 DOI:10.1002/adfm.v28.39http://doi.org/10.1002/adfm.v28.39 .
Zhao R, Dou C, Xie Z, Liu J, Wang L . Angew Chem Int Ed , 2016 . 55 ( 17 ): 5313 - 5317 . DOI:10.1002/anie.201601305http://doi.org/10.1002/anie.201601305 .
Zhang T, Zeng G, Ye F, Zhao X, Yang X . Adv Energy Mater , 2018 . 8 ( 25 ): 1801387 DOI:10.1002/aenm.v8.25http://doi.org/10.1002/aenm.v8.25 .
Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C . Energy Environ Sci , 2018 . 11 ( 4 ): 841 - 849 . DOI:10.1039/C8EE00215Khttp://doi.org/10.1039/C8EE00215K .
Li J, Yang J, Hu J, Chen Y, Xiao B, Zhou E . Chem Commun , 2018 . 54 ( 76 ): 10770 - 10773 . DOI:10.1039/C8CC06198Jhttp://doi.org/10.1039/C8CC06198J .
Li Y . Chem Asian J , 2013 . 8 ( 10 ): 2316 - 2328 . DOI:10.1002/asia.201300600http://doi.org/10.1002/asia.201300600 .
He Y, Li Y . Phys Chem Chem Phys , 2011 . 13 ( 6 ): 1970 - 1983 . DOI:10.1039/C0CP01178Ahttp://doi.org/10.1039/C0CP01178A .
Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H . Nat Commun , 2014 . 5 5293 DOI:10.1038/ncomms6293http://doi.org/10.1038/ncomms6293 .
Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang X F, Liu F, Huang F, Cao Y . Adv Mater , 2016 . 28 ( 44 ): 9811 - 9818 . DOI:10.1002/adma.201603178http://doi.org/10.1002/adma.201603178 .
Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J . Sci China Chem , 2015 . 58 ( 2 ): 248 - 256 . DOI:10.1007/s11426-014-5273-xhttp://doi.org/10.1007/s11426-014-5273-x .
Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H . Nat Energy , 2016 . 1 ( 2 ): 15027 DOI:10.1038/nenergy.2015.27http://doi.org/10.1038/nenergy.2015.27 .
Lin Y, Zhan X . Mater Horiz , 2014 . 1 ( 5 ): 470 - 488 . DOI:10.1039/C4MH00042Khttp://doi.org/10.1039/C4MH00042K .
Chen S, Cho H J, Lee J, Yang Y, Zhang Z G, Li Y, Yang C . Adv Energy Mater , 2017 . 7 ( 21 ): 1701125 DOI:10.1002/aenm.201701125http://doi.org/10.1002/aenm.201701125 .
Jeong M, Chen S, Lee S M, Wang Z, Yang Y, Zhang Z G, Zhang C, Xiao M, Li Y, Yang C . Adv Energy Mater , 2018 . 8 ( 7 ): 1702166 DOI:10.1002/aenm.201702166http://doi.org/10.1002/aenm.201702166 .
Cui C, Li Y, Li Y . Adv Energy Mater , 2017 . 7 ( 10 ): 1601251 DOI:10.1002/aenm.201601251http://doi.org/10.1002/aenm.201601251 .
Nielsen C B, Holliday S, Chen H Y, Cryer S J, McCulloch I . Acc Chem Res , 2015 . 48 ( 11 ): 2803 - 2812 . DOI:10.1021/acs.accounts.5b00199http://doi.org/10.1021/acs.accounts.5b00199 .
Yan C, Barlow S, Wang Z, Yan H, Jen A K Y, Marder S R, Zhan X . Nat Rev Mater , 2018 . 3 18003 DOI:10.1038/natrevmats.2018.3http://doi.org/10.1038/natrevmats.2018.3 .
Zhang G, Zhao J, Chow P C Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H . Chem Rev , 2018 . 118 ( 7 ): 3447 - 3507 . DOI:10.1021/acs.chemrev.7b00535http://doi.org/10.1021/acs.chemrev.7b00535 .
Yu G, Heeger A J . J Appl Phys , 1995 . 78 ( 7 ): 4510 - 4515 . DOI:10.1063/1.359792http://doi.org/10.1063/1.359792 .
Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z A, Hou J . Macromolecules , 2012 . 45 ( 24 ): 9611 - 9617 . DOI:10.1021/ma301900hhttp://doi.org/10.1021/ma301900h .
Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X . Adv Mater , 2015 . 27 ( 7 ): 1170 - 1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Yao K, Chen L, Chen Y, Li F, Ren X, Wang H, Li Y . Polym Chem , 2012 . 3 ( 3 ): 710 - 717 . DOI:10.1039/c2py00523ahttp://doi.org/10.1039/c2py00523a .
Chen L, Li X, Chen Y . Polym Chem , 2013 . 4 ( 23 ): 5637 - 5644 . DOI:10.1039/c3py00693jhttp://doi.org/10.1039/c3py00693j .
Chen X, Chen L, Yao K, Chen Y . ACS Appl Mater Interfaces , 2013 . 5 ( 17 ): 8321 - 8328 . DOI:10.1021/am402031vhttp://doi.org/10.1021/am402031v .
Chen X, Chen L, Chen Y . J Polym Sci, Part A: Polym Chem , 2013 . 51 ( 19 ): 4156 - 4166 . DOI:10.1002/pola.26828http://doi.org/10.1002/pola.26828 .
Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell T P, Yip H L, Huang F, Cao Y . Chem Mater , 2014 . 26 ( 9 ): 3009 - 3017 . DOI:10.1021/cm500953ehttp://doi.org/10.1021/cm500953e .
Chen L, Peng S, Chen Y . ACS Appl Mater Interfaces , 2014 . 6 ( 11 ): 8115 - 8123 . DOI:10.1021/am501831zhttp://doi.org/10.1021/am501831z .
Deng Z, Chen L, Wu F, Chen Y . J Phys Chem C , 2014 . 118 ( 12 ): 6038 - 6045 . DOI:10.1021/jp411286whttp://doi.org/10.1021/jp411286w .
Li C, Chen Z, Wu F, Chen L, Chen Y . Synth Met , 2017 . 226 71 - 79 . DOI:10.1016/j.synthmet.2017.02.003http://doi.org/10.1016/j.synthmet.2017.02.003 .
Duan C, Gao K, van Franeker J J, Liu F, Wienk M M, Janssen R A J . J Am Chem Soc , 2016 . 138 ( 34 ): 10782 - 10785 . DOI:10.1021/jacs.6b06418http://doi.org/10.1021/jacs.6b06418 .
Kelly M A, Roland S, Zhang Q, Lee Y, Kabius B, Wang Q, Gomez E D, Neher D, You W . J Phys Chem C , 2017 . 121 ( 4 ): 2059 - 2068 . DOI:10.1021/acs.jpcc.6b10993http://doi.org/10.1021/acs.jpcc.6b10993 .
Liao X, Zhang L, Chen L, Hu X, Ai Q, Ma W, Chen Y . Nano Energy , 2017 . 37 32 - 39 . DOI:10.1016/j.nanoen.2017.05.008http://doi.org/10.1016/j.nanoen.2017.05.008 .
Shin I, Ahn H j, Yun J H, Jo J W, Park S, Joe S Y, Bang J, Son H J . Adv Energy Mater , 2018 . 8 ( 7 ): 1701405 DOI:10.1002/aenm.201701405http://doi.org/10.1002/aenm.201701405 .
Zhang A, Li C, Yang F, Zhang J, Wang Z, Wei Z, Li W . Angew Chem Int Ed , 2017 . 56 ( 10 ): 2694 - 2698 . DOI:10.1002/anie.201612090http://doi.org/10.1002/anie.201612090 .
Duan Y, Xu X, Yan H, Wu W, Li Z, Peng Q . Adv Mater , 2017 . 29 ( 7 ): 1605115 DOI:10.1002/adma.201605115http://doi.org/10.1002/adma.201605115 .
Gao G, Liang N, Geng H, Jiang W, Fu H, Feng J, Hou J, Feng X, Wang Z . J Am Chem Soc , 2017 . 139 ( 44 ): 15914 - 15920 . DOI:10.1021/jacs.7b09140http://doi.org/10.1021/jacs.7b09140 .
Zhang J, Li Y, Huang J, Hu H, Zhang G, Ma T, Chow P C Y, Ade H, Pan D, Yan H . J Am Chem Soc , 2017 . 139 ( 45 ): 16092 - 16095 . DOI:10.1021/jacs.7b09998http://doi.org/10.1021/jacs.7b09998 .
Wu Q, Zhao D, Schneider A M, Chen W, Yu L . J Am Chem Soc , 2016 . 138 ( 23 ): 7248 - 7251 . DOI:10.1021/jacs.6b03562http://doi.org/10.1021/jacs.6b03562 .
Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z . J Am Chem Soc , 2017 . 139 ( 9 ): 3356 - 3359 . DOI:10.1021/jacs.7b00566http://doi.org/10.1021/jacs.7b00566 .
Gao H-H, Sun Y, Wan X, Kan B, Ke X, Zhang H, Li C, Chen Y . Sci China Mater , 2017 . 60 ( 9 ): 819 - 828 . DOI:10.1007/s40843-017-9084-xhttp://doi.org/10.1007/s40843-017-9084-x .
Wang J, Wang W, Wang X, Wu Y, Zhang Q, Yan C, Ma W, You W, Zhan X . Adv Mater , 2017 . 29 ( 35 ): 1702125 DOI:10.1002/adma.201702125http://doi.org/10.1002/adma.201702125 .
Li Chao(李超), Yuan Zhongyi(袁忠义), Zhang Youdi(张有地), Cai Chunsheng(蔡春生), Hu Yu(胡昱), Chen Yiwang(陈义旺) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 6 ): 712 - 720.
Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E . Adv Energy Mater , 2017 . 7 ( 8 ): 1602269 DOI:10.1002/aenm.201602269http://doi.org/10.1002/aenm.201602269 .
Kim J Y, Park S, Lee S, Ahn H, Joe S Y, Kim B J, Son H J. Adv Energy Mater, 1801601
Duan C, Li Z, Pang S, Zhu Y L, Lin B, Colberts F J M, Leenaers P J, Wang E, Sun Z Y, Ma W, Meskers S C J, Janssen R A J. Solar RRL, 1800247
Li K, Hu Z, Zeng Z, Huang Z, Zhong W, Ying L, Huang F, Cao Y . Org Electron , 2018 . 57 317 - 322 . DOI:10.1016/j.orgel.2018.03.005http://doi.org/10.1016/j.orgel.2018.03.005 .
Huo L, Xue X, Liu T, Xiong W, Qi F, Fan B, Xie D, Liu F, Yang C, Sun Y . Chem Mater , 2018 . 30 ( 10 ): 3294 - 3300 . DOI:10.1021/acs.chemmater.8b00510http://doi.org/10.1021/acs.chemmater.8b00510 .
Hwang Y-J, Earmme T, Courtright B A E, Eberle F N, Jenekhe S A . J Am Chem Soc , 2015 . 137 ( 13 ): 4424 - 4434 . DOI:10.1021/ja513260whttp://doi.org/10.1021/ja513260w .
Li Z, Xu X, Zhang W, Meng X, Genene Z, Ma W, Mammo W, Yartsev A, Andersson M R, Janssen R A J, Wang E . Energy Environ Sci , 2017 . 10 ( 10 ): 2212 - 2221 . DOI:10.1039/C7EE01858Dhttp://doi.org/10.1039/C7EE01858D .
Chen D, Yao J, Chen L, Yin J, Lv R, Huang B, Liu S, Zhang Z G, Yang C, Chen Y, Li Y . Angew Chem Int Ed , 2018 . 57 ( 17 ): 4580 - 4584 . DOI:10.1002/anie.201800035http://doi.org/10.1002/anie.201800035 .
Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec C J, Janssen R A J, Bazan G C, Huang F, Cao Y . J Am Chem Soc , 2018 . 140 ( 28 ): 8934 - 8943 . DOI:10.1021/jacs.8b05038http://doi.org/10.1021/jacs.8b05038 .
0
Views
32
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution