浏览全部资源
扫码关注微信
1.华南理工大学化学与化工学院 制浆造纸工程国家重点实验室 广州 510640
2.河南中医药大学药学院 郑州 450046
Published:2019-2,
Published Online:27 November 2018,
Received:5 October 2018,
Revised:25 October 2018,
扫 描 看 全 文
Shuo Lu, Dong-jie Yang, Yuan-yuan Li, Zhi-xian Li, Xue-qing Qiu. Double pH-Responsive Pickering Emulsions Stabilized by Quaternized Lignin Combination with Titanium Dioxide Nanoparticles. [J]. Acta Polymerica Sinica 50(2):160-169(2019)
Shuo Lu, Dong-jie Yang, Yuan-yuan Li, Zhi-xian Li, Xue-qing Qiu. Double pH-Responsive Pickering Emulsions Stabilized by Quaternized Lignin Combination with Titanium Dioxide Nanoparticles. [J]. Acta Polymerica Sinica 50(2):160-169(2019) DOI: 10.11777/j.issn1000-3304.2018.18211.
利用季铵化木质素与TiO
2
纳米颗粒复合作为乳化剂,以正癸烷为油相,制备具有pH响应性的O/W型Pickering乳液. 该乳液在6.0
<
pH
<
7.0范围内稳定,在酸性和碱性条件下不稳定. 在中性溶液中,季铵化木质素带负电,TiO
2
带正电,两者通过静电吸附作用结合,季铵化木质素的疏水性苯丙烷骨架使TiO
2
的亲水性降低,提高颗粒的界面活性,形成稳定的乳液. 在酸性和碱性条件下,季铵化木质素和TiO
2
带同种电荷,两者之间存在强烈的静电斥力,而单独的TiO
2
纳米颗粒亲水性太高,无法稳定于油水界面形成稳定的乳液,故乳液破乳. 因此季铵化木质素与TiO
2
纳米颗粒之间的吸附特征赋予Pickering乳液双重pH响应特性,向体系中加入HCl溶液以及NaOH溶液改变水相的pH值,能使乳液体系在乳化与破乳状态之间循环多次,同时乳滴没有明显的变化,具有优异的耐盐性.
pH-Responsive oil-in-water Pickering emulsions using
n
-decane as oil phase were prepared by mixing quaternized lignin (QAL) and titanium dioxide (TiO
2
) nanoparticles as emulsifiers. The emulsions stabilized by 0.5 wt% TiO
2
neat nanoparticles are extremely unstable due to the strong hydrophilic properties of the nanoparticles. However
when TiO
2
nanoparticles are dispersed in neutral solution containing 0.1 wt% QAL
all the emulsifier particles can be applied onto the
n
-decane/water interface
which greatly improves the stability of the emulsions and the droplet size ranges from 20 μm to 60 μm. Meanwhile
emulsions stabilized by QAL and TiO
2
nanoparticles show outstanding pH-responsive properties
which are stable in the range of 6.0
<
pH
<
7.0 while unstable under the acidic and basic conditions. The synergistic stabilization mechanism of QAL and TiO
2
nanoparticles was studied with zeta potential
adsorption kinetics
and three-phase contact angle. QAL pertains to amphoteric surfactants whose isoelectric point is 7.5. When 6.0
<
pH
<
7.0
QAL molecules are negatively charged
allowing them to combine with TiO
2
nanoparticles
via
electrostatic interactions. The hydrophobic phenylpropane skeleton of QAL molecule reduces the hydrophilicity of TiO
2
nanoparticles thereby enhances their surface activity to form stable emulsions. However
under the acidic and alkaline conditions
QAL molecules turn into the same charge with TiO
2
nanoparticles. Thus
QAL molecules significantly desorb from TiO
2
nanoparticles surface due to electrostatic repulsion. TiO
2
nanoparticles become intensely hydrophilic again and unable to stay on the oil/water interface
which makes the emulsions unstable as a result. Therefore
the adsorption behaviour between QAL and TiO
2
nanoparticles endows Pickering emulsions with double pH-responsive characteristics. With the alternative pH of aqueous phase by adding aqueous HCl and aqueous NaOH
the emulsion system can be recycled many times between emulsification and demulsification while the average droplet size has no obvious change due to its excellent salt tolerance.
季铵化木质素TiO2pH响应性Pickering乳液吸附
Quaternized ligninTiO2pH ResponsivePickering emulsionsAdsorption
Binks B P . Curr Opin Colloid Interface Sci , 2002 . 7 21 - 41 . DOI:10.1016/S1359-0294(02)00008-0http://doi.org/10.1016/S1359-0294(02)00008-0 .
Chevalier Y, Bolzinger M A . Colloid Surf, A , 2013 . 439 23 - 34 . DOI:10.1016/j.colsurfa.2013.02.054http://doi.org/10.1016/j.colsurfa.2013.02.054 .
Aveyard R, Binks B P, Clint J H . Adv Colloid Interface , 2003 . 100-102 503 - 546 . DOI:10.1016/S0001-8686(02)00069-6http://doi.org/10.1016/S0001-8686(02)00069-6 .
Tang J, Quinlan PJ, Tam KC . Soft Matter , 2015 . 11 ( 18 ): 3512 - 3529 . DOI:10.1039/C5SM00247Hhttp://doi.org/10.1039/C5SM00247H .
Zhu Y, Jiang J, Liu K, Cui Z, Binks B P . Langmuir , 2015 . 31 ( 11 ): 3301 - 3307 . DOI:10.1021/acs.langmuir.5b00295http://doi.org/10.1021/acs.langmuir.5b00295 .
Liu H, Wei Z, Hu M, Deng Y, Tong Z, Wang C . RSC Adv , 2014 . 4 ( 55 ): 29344 - 29351 . DOI:10.1039/C4RA01660Bhttp://doi.org/10.1039/C4RA01660B .
Fujii S, Read ES, Binks B P, Armes S P . Adv Mater , 2005 . 17 ( 8 ): 1014 - 1018 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Cui Z G, Cui C F, Zhu Y, Binks B P . Langmuir , 2012 . 28 ( 1 ): 314 - 320 . DOI:10.1021/la204021vhttp://doi.org/10.1021/la204021v .
Zhu Y, Pei X, Jiang J, Cui Z, Binks B P . Langmuir , 2015 . 31 ( 47 ): 12937 - 12943 . DOI:10.1021/acs.langmuir.5b03681http://doi.org/10.1021/acs.langmuir.5b03681 .
Tang J, Lee M F, Zhang W, Zhao B, Berry R M, Tam K C . Biomacromolecules , 2014 . 15 ( 8 ): 3052 - 3060 . DOI:10.1021/bm500663whttp://doi.org/10.1021/bm500663w .
Morse A J, Armes S P, Thompson K L, Dupin D, Fielding L A, Mills P, Swart R . Langmuir , 2013 . 29 ( 18 ): 5466 - 5475 . DOI:10.1021/la400786ahttp://doi.org/10.1021/la400786a .
Nguyen B T, Wang W, Saunders B R, Benyahia L, Nicolai T . Langmuir , 2015 . 31 ( 12 ): 3605 - 3611 . DOI:10.1021/la5049024http://doi.org/10.1021/la5049024 .
Liu H, Wang C, Zou S, Wei Z, Tong Z . Langmuir , 2012 . 28 ( 30 ): 11017 - 11024 . DOI:10.1021/la3021113http://doi.org/10.1021/la3021113 .
Gao Z, Zhao J, Huang Y, Yao X, Zhang K, Fang Y, Nishinari K, Phillips G O, Jiang F, Yang H . LWT-Food Sci Technol , 2017 . 76 1 - 8 . DOI:10.1016/j.lwt.2016.10.038http://doi.org/10.1016/j.lwt.2016.10.038 .
Pang K, Ding B, Liu X, Wu H, Duan Y, Zhang J . Green Chem , 2017 . 19 ( 15 ): 3665 - 3670 . DOI:10.1039/C7GC01592Ehttp://doi.org/10.1039/C7GC01592E .
Doherty W O S, Mousavioun P, Fellows CM . Ind Crop Prod , 2011 . 33 ( 2 ): 259 - 276 . DOI:10.1016/j.indcrop.2010.10.022http://doi.org/10.1016/j.indcrop.2010.10.022 .
Stewart D . Ind Crop Prod , 2008 . 27 ( 2 ): 202 - 207 . DOI:10.1016/j.indcrop.2007.07.008http://doi.org/10.1016/j.indcrop.2007.07.008 .
Figueiredo P, Lintinen K, Hirvonen J T, Kostiainen MA, Santos H A . Prog Mater Sci , 2018 . 93 233 - 269 . DOI:10.1016/j.pmatsci.2017.12.001http://doi.org/10.1016/j.pmatsci.2017.12.001 .
Lora J H, Glasser W G . J Polym Environ , 2002 . 10 ( 1-2 ): 39 - 48.
Ye X X, Luo W, Lin L, Zhang Y Q, Liu M H . J Disper Sci Technol , 2016 . 38 ( 6 ): 852 - 859.
Yang Dongjie(杨东杰), Guo Wenyuan(郭闻源), Li Xuzhao(李旭昭), Wang Yue(王玥), Qiu Xueqing(邱学青) . 燃料化学学报 , Journal of Fuel Chemistry and Technology , 2012 . 46 ( 6 ): 35 - 39.
Li S, Li Z, Zhang Y, Liu C, Yu G, Li B, Mu X, Peng H . ACS Sustain Chem Eng , 2017 . 5 ( 5 ): 4214 - 4222 . DOI:10.1021/acssuschemeng.7b00194http://doi.org/10.1021/acssuschemeng.7b00194 .
Zhou Mingsong(周明松), Xu Ruilin(许锐林), Wang Wenli(王文利), Pang Yuxia(庞煜霞), Qiu Xueqing(邱学青) . 高分子学报 , Acta Polymerica Sinica , 2015 . ( 12 ): 1414 - 1420 . DOI:10.11777/j.issn1000-3304.2015.15094http://doi.org/10.11777/j.issn1000-3304.2015.15094 .
Yi H, Yang Y, Gu X, Huang J, Wang C . J Mater Chem A , 2015 . 3 ( 26 ): 13749 - 13757 . DOI:10.1039/C5TA02288Fhttp://doi.org/10.1039/C5TA02288F .
Silmore K S, Gupta C, Washburn N R . J Colloid Interface Sci , 2016 . 466 91 - 100 . DOI:10.1016/j.jcis.2015.11.042http://doi.org/10.1016/j.jcis.2015.11.042 .
Wei Z, Yang Y, Yang R, Wang C . Green Chem , 2012 . 14 ( 11 ): 3230 - 3236 . DOI:10.1039/c2gc36278chttp://doi.org/10.1039/c2gc36278c .
Qian Y, Zhang Q, Qiu X, Zhu S . Green Chem , 2014 . 16 ( 12 ): 4963 - 4968 . DOI:10.1039/C4GC01242Ahttp://doi.org/10.1039/C4GC01242A .
Li Yuanyuan(李圆圆), Yang Dongjie(杨东杰), Qiu Xueqing (邱学青) . 高等学校化学学报 , Chemical Journal of Chinese Universities , 2017 . 38 ( 5 ): 880 - 887.
Li Y, Qiu X, Qian Y, Xiong W, Yang D . Chem Eng J , 2017 . 327 1176 - 1183 . DOI:10.1016/j.cej.2017.07.022http://doi.org/10.1016/j.cej.2017.07.022 .
Cai C, Zhan X, Zeng M, Lou H, Pang Y, Yang J, Yang D, Qiu X . Green Chem , 2017 . 19 ( 22 ): 5479 - 5487 . DOI:10.1039/C7GC02571Hhttp://doi.org/10.1039/C7GC02571H .
Ye F, Miao M, Jiang B, Campanella O H, Jin Z, Zhang T . Food Chem , 2017 . 229 152 - 8 . DOI:10.1016/j.foodchem.2017.02.062http://doi.org/10.1016/j.foodchem.2017.02.062 .
Lu J, Zhou W, Chen J, Jin Y, Walters K B, Ding S . RSC Adv , 2015 . 5 ( 13 ): 9416 - 9424 . DOI:10.1039/C4RA14109Ahttp://doi.org/10.1039/C4RA14109A .
Yi C, Yang Y, Zhu Y, Liu N, Liu X, Luo J, Jiang M . Langmuir , 2012 . 28 ( 25 ): 9211 - 9222 . DOI:10.1021/la301605ahttp://doi.org/10.1021/la301605a .
Low L E, Tey B T, Ong B H, Chan E S, Tang S Y . Carbohyd Polym , 2017 . 155 391 - 399 . DOI:10.1016/j.carbpol.2016.08.091http://doi.org/10.1016/j.carbpol.2016.08.091 .
Zhao X, Yu G, Li J, Feng Y, Zhang L, Peng Y, Tang Y, Wang L . ACS Sustain Chem Eng , 2018 . 6 ( 3 ): 4105 - 4114 . DOI:10.1021/acssuschemeng.7b04508http://doi.org/10.1021/acssuschemeng.7b04508 .
Nowotny M K, Sheppard L R, Bak T, Nowotny J . J Phys Chem C , 2008 . 112 ( 14 ): 5275 - 5300 . DOI:10.1021/jp077275mhttp://doi.org/10.1021/jp077275m .
González E, Bonnefond A, Barrado M, Casado Barrasa A M, Asua J M, Leiza J R . Chem Eng J , 2015 . 281 209 - 217 . DOI:10.1016/j.cej.2015.06.074http://doi.org/10.1016/j.cej.2015.06.074 .
Zhang S, Li L, Liu Y, Zhang Q . Chinese J Chem Eng , 2017 . 25 ( 2 ): 223 - 231 . DOI:10.1016/j.cjche.2016.08.003http://doi.org/10.1016/j.cjche.2016.08.003 .
Hao Y, Liu Y, Yang R, Zhang X, Liu J, Yang H . Chinese Chem Lett , 2018 . 29 ( 6 ): 778 - 782 . DOI:10.1016/j.cclet.2018.01.010http://doi.org/10.1016/j.cclet.2018.01.010 .
Chen Y, Li W, Zhang X . Colloid J , 2011 . 73 ( 2 ): 267 - 274 . DOI:10.1134/S1061933X11020189http://doi.org/10.1134/S1061933X11020189 .
Yang Dongjie(杨东杰), Bai Mengxian(白孟仙), Hu Wenli(胡文莉), Yan Mingfang(严明芳), Qiu Xueqing(邱学青) . 高校化学工程学报 , Journal of Chemical Engineering of Chinese Universities , 2012 . ( 5 ): 748 - 754.
Yang Dongjie(杨东杰), Guo Wenyuan(郭闻源), Zen Weimei(曾伟媚), Qiu Xueqing(邱学青) . 高分子学报 , Acta Polymerica Sinica , 2014 . ( 3 ): 333 - 340.
0
Views
41
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution