Xin-xin Wang, Wen-tao He, Guo-min Xu, Li-juan Long, Wei-jiang Huang, Jie Yu. Synergistic Flame Retardancy of Amine-based Multi-walled Carbon Nanotubes/DOPO Derivatives and Its Effect on the Properties of Nylon 6. [J]. Acta Polymerica Sinica 50(4):419-428(2019)
DOI:
Xin-xin Wang, Wen-tao He, Guo-min Xu, Li-juan Long, Wei-jiang Huang, Jie Yu. Synergistic Flame Retardancy of Amine-based Multi-walled Carbon Nanotubes/DOPO Derivatives and Its Effect on the Properties of Nylon 6. [J]. Acta Polymerica Sinica 50(4):419-428(2019) DOI: 10.11777/j.issn1000-3304.2018.18230.
Synergistic Flame Retardancy of Amine-based Multi-walled Carbon Nanotubes/DOPO Derivatives and Its Effect on the Properties of Nylon 6
A novel DOPO derivative (DIDOPO) is incorporated together with amine-based multi-walled carbon nanotubes (MWCNTs) into PA6 by melt blending. Mechanical properties
thermal stability
crystallinity
and combustion properties are measured using universal testing machine
thermogravimetric analyzer
differential scanning calorimeter
and cone calorimeter
respectively. After combustion
the morphology of char layer is further observed by a scanning electron microscope. The results show that MWCNTs-incorporated flame-retardant nanocomposites exhibit a tensile strength that is 55% higher than that of the PA6/DIDOPO composites. From the TG and DTG curves
it can be seen that the
T
5wt%
of PA6 composites increased slightly and the maximum weight loss rate temperature (
T
max
) gradually improved after adding MWCNTs
indicating that the addition of MWCNTs delays the process of thermal degradation of the PA6 composites. With the incorporation of MWCNTs
the amount of residual carbon is also increased. From the non-isothermal crystallization curve
it can be seen that the crystallization initial temperature (
T
onset
) and crystallization peak temperature (
T
c
) of the PA6 composites are significantly improved with the addition of MWCNTs. However
the crystallinity is lower due to the heterogeneous nucleation of the MWCNTs. From UL-94 datas
the combustion time (
t
1
+
t
2
) is increased with the incorporation of MWCNTs into PA6/DIDOPO composites
which results in a V-1 level in the UL-94 test and a slightly increased LOI value. This phenomenon can be attributed to an increment in melt viscosity and a decrement in flow properties. Combined with the curves of effective combustion heat
total smoke release and CO release rate
it can be concluded that the synergistic effect between MWCNTs and DIDOPO weakens the thermal degradation process of the PA6 composites
thus increasing the incomplete combustion and reducing the complete combustion of the PA6 composites
which is beneficial to the flame retardance of the materials. Addition of 2 wt% MWCNTs results in a peak heat release rate (PHRR) of 367.28 kW/m
2
which corresponds to a 58.9% lower rate than that of pure PA6
as revealed by cone calorimetry. Based on SEM and Raman
a continuous and compact char layer is observed upon addition of MWCNTs
which is ascribed to a synergistic effect between MWCNTs and DIDOPO.
Vahabi H, Lopez-Cuesta J M, Chivas-Joly C. Novel Fire Retardant Polymers & Composite Materials. France: Woodhead Publishing, 2017. 147 – 170.
Salmeia K A, Gaan S . Polym Degrad Stab , 2015 . 113 119 - 134 . DOI:10.1016/j.polymdegradstab.2014.12.014http://doi.org/10.1016/j.polymdegradstab.2014.12.014 .
Buczko A, Stelzig T, Bommer L, Rentsch D, Heneczkowski M, Gaan S . Polym Degrad Stab , 2014 . 107 ( 4 ): 158 - 165.
Xie M C, Zhang S M, Ding Y F, Wang F, Liu P, Tang H Y, Wang Y T, Yang M S . J Appl Polym Sci , 2017 . 134 ( 22 ): 1 - 11.
Long L J, Yin J B, He W T, Qin S H, Yu J . Ind Eng Chem Res , 2016 . 55 ( 40 ): 10803 - 10812 . DOI:10.1021/acs.iecr.6b02350http://doi.org/10.1021/acs.iecr.6b02350 .
Beyer G . Fire Mater , 2002 . 26 ( 6 ): 291 - 293 . DOI:10.1002/(ISSN)1099-1018http://doi.org/10.1002/(ISSN)1099-1018 .
Li J, Fang Z P, Tong L F, Gu A J, Liu F . J Appl Polym Sci , 2007 . 106 ( 5 ): 2898 - 2906 . DOI:10.1002/app.24599http://doi.org/10.1002/app.24599 .
Chang Q F, Long L J, He W T, Qin S H, Yu J . Thermochim Acta , 2016 . 639 84 - 90 . DOI:10.1016/j.tca.2016.07.006http://doi.org/10.1016/j.tca.2016.07.006 .
Weng S P, Xu Y Z, Fourier Transform Infrared Spectroscopy. Beijing: Chemical Industry Press, 2010. 41 – 42
Li J, Fang Z P, Tong L F, Gu A J, Liu F . J Polym Sci, Part B: Polym Phys , 2006 . 44 ( 10 ): 1499 - 1512 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488 .
Li J, Ke C H, Fang K Y, Fan X Y, Guo Z H, Fang Z P . J Macromol Sci Part B Phys , 2010 . 49 ( 3 ): 405 - 418 . DOI:10.1080/00222340903343632http://doi.org/10.1080/00222340903343632 .
Schartel B P, Pötschke, Knoll U, Abdel-Goadb M . Eur Polym J , 2005 . 41 ( 5 ): 1061 - 1070 . DOI:10.1016/j.eurpolymj.2004.11.023http://doi.org/10.1016/j.eurpolymj.2004.11.023 .
Zhao B, Chen L, Long J W, Chen H B, Wang Y Z . Ind Eng Chem Res , 2013 . 52 ( 8 ): 2875 - 2886 . DOI:10.1021/ie303446shttp://doi.org/10.1021/ie303446s .
Xing W Y, Yang W, Yang W J, Hu Q H, Si J Y, Lu H D, Yang B H, Song L, Hu Y, Richard K.K . ACS Appl Mater Interfaces , 2016 . 8 ( 39 ): A - I.
Levchik S V, Weil E D . J Fire Sci , 2006 . 24 ( 5 ): 345 - 364 . DOI:10.1177/0734904106068426http://doi.org/10.1177/0734904106068426 .
Kashiwagi T, Du F, Winey K I, Groth K M, Shields J R, Bellayer S P, Kim H, Douglas J F . Polymer , 2005 . 46 ( 2 ): 471 - 481 . DOI:10.1016/j.polymer.2004.10.087http://doi.org/10.1016/j.polymer.2004.10.087 .
Yang Dian(杨典), Lu Chang(陆昶), Tang Tan(唐坦), Zhang Chunhui(张春晖), Ma Qingyan(马晴岩), Huang Xinhui(黄新辉), Zhang Yuqing(张玉清) . 材料研究学报 , Chinese Journal of Materials Research , 2016 . ( 3 ): 199 - 208.
Wang Fang(王芳), Hao Jianwei(郝建薇), Li Zhuoshi(李茁实), Zou Hongfei(邹红飞) . 高分子学报 , Acta Polymerica Sinica , 2016 . ( 7 ): 860 - 870.