浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300072
Published:2019-2,
Published Online:18 December 2018,
Received:3 November 2018,
Revised:28 November 2018,
扫 描 看 全 文
Yan-hou Geng, Ying Sui. Direct Arylation Polycondensation Synthesis of High Mobility Conjugated Polymers. [J]. Acta Polymerica Sinica 50(2):109-117(2019)
Yan-hou Geng, Ying Sui. Direct Arylation Polycondensation Synthesis of High Mobility Conjugated Polymers. [J]. Acta Polymerica Sinica 50(2):109-117(2019) DOI: 10.11777/j.issn1000-3304.2018.18231.
直接芳基化缩聚是一种新型的共轭聚合物合成方法,具有合成步骤少、原子经济和环境友好等优点,但也面临着反应活性低和选择性差的挑战. 另一方面,由于在有机薄膜晶体管中的广泛应用,高迁移率共轭聚合物近年来受到广泛关注. 本综述在简要介绍直接芳基化反应及其反应机理的基础上,分析了直接芳基化缩聚中存在的副反应,总结了这一合成方法在合成聚噻吩以及基于苝二酰亚胺、吡咯并吡咯二酮和异靛蓝的给-受体型共轭聚合物方面的应用. 最近的研究进展说明,通过对单体结构的精心设计和对聚合条件的针对性优化,采用直接芳基化缩聚可以合成高分子量、无缺陷的共轭聚合物. 直接芳基化缩聚使高迁移率共轭聚合物的宏量合成成为可能.
A new protocol for conjugated polymer synthesis
direct arylation polycondensation (DArP) bears the merits of more straightforwardness (fewer steps)
better atom economy
and greater environmental benignity
but still faces remaining challenges in reactivity and selectivity. Given that high mobility conjugated polymers are receiving added attention these days due to their extensive use in organic thin-film transistors (OTFTs)
this feature article briefly introduces the underlying mechanism of direct arylation reaction and systematically summarizes the application of DArP in synthesizing polythiophenes and donor-acceptor (D-A) conjugated polymers from naphthalene diimide (NDI)
diketopyrrolopyrrole (DPP)
and isoindigo (IID) derivatives. The
α
C―H direct arylation of thiophene rings can give rise to conjugated polymers based on NDI and DPP derivatives
which exhibit negligible defects and reasonably high molecular weights through careful optimization of the catalyst (including ligands)
solvent
additives
monomer concentration
and polymerization temperature. To deal with side reactions during DArP
primarily the C―H/C―H and C―Br/C―Br homo-couplings and the
β
C―H direct arylation (causing branching or cross-linking)
multi-fluorinated thiophene moieties such as 3
3'
4
4'-tetrafluoro-2
2'-bithiophene (4F2T) and (
E
)-1
2-bis(3
4-difluorothien-2-yl)ethene (4FTVT) have been designed for a higher reactivity toward DArP. Moreover
selectivity issues can be well sidestepped by introducing F-atoms onto the
β
-positions of thiophene unit
which in the meantime significantly lowers the frontier molecular orbital energy levels of polymers obtained. In consequence
ambipolar or unipolar n-type D-A conjugated polymers based on DPP and IID derivatives can be harvested at high molecular weight
which enables further fabrication of ambipolar OTFTs with hole and electron mobilities individually up to 2.63 and 8.11 cm
2
V
−1
s
−1
or unipolar n-type OTFTs with electron mobility over 4 cm
2
V
−1
s
−1
. Progress above indicates that DArP can afford high mobility and defect-free conjugated polymers through elaborate monomer design and the optimal polymerization conditions. Hence
DArP can serve as a reliable method for the mass production of high performance conjugated polymers.
直接芳基化缩聚共轭聚合物半导体材料有机薄膜晶体管载流子迁移率
Direct arylation polycondensationConjugated polymersSemiconducting materialsOrganic thin-film transistorsCharge carrier mobility
Osaka I, Takimiya K . Adv Mater , 2017 . 29 1605218 DOI:10.1002/adma.201605218http://doi.org/10.1002/adma.201605218 .
Shi L, Guo Y, Hu W, Liu Y . Mater Chem Front , 2017 . 1 2423 - 2456 . DOI:10.1039/C7QM00169Jhttp://doi.org/10.1039/C7QM00169J .
Yang J, Zhao Z Y, Wang S, Guo Y L, Liu Y Q . Chem , 2018 . 4 1 - 38 . DOI:10.1016/j.chempr.2017.12.021http://doi.org/10.1016/j.chempr.2017.12.021 .
Guo X, Facchetti A, Marks T J . Chem Rev , 2014 . 114 8943 - 9021 . DOI:10.1021/cr500225dhttp://doi.org/10.1021/cr500225d .
Bellina F, Rossi R . Tetrahedron , 2009 . 65 10269 - 10310 . DOI:10.1016/j.tet.2009.10.015http://doi.org/10.1016/j.tet.2009.10.015 .
Wencel-Delord J, Glorius F . Nat Chem , 2013 . 5 369 - 375 . DOI:10.1038/nchem.1607http://doi.org/10.1038/nchem.1607 .
Pouliot J R, Grenier F, Blaskovits J T, Beaupre S, Leclerc M . Chem Rev , 2016 . 116 14225 - 14274 . DOI:10.1021/acs.chemrev.6b00498http://doi.org/10.1021/acs.chemrev.6b00498 .
Bura T, Blaskovits J T, Leclerc M . J Am Chem Soc , 2016 . 138 10056 - 10071 . DOI:10.1021/jacs.6b06237http://doi.org/10.1021/jacs.6b06237 .
Nakabayashi K . Polym J , 2018 . 50 475 - 483 . DOI:10.1038/s41428-018-0039-5http://doi.org/10.1038/s41428-018-0039-5 .
Wang Q F, Takita R, Kikuzaki Y, Ozawa F . J Am Chem Soc , 2010 . 132 11420 - 11421 . DOI:10.1021/ja105767zhttp://doi.org/10.1021/ja105767z .
Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M . Chem Rev , 2002 . 102 1359 - 1469 . DOI:10.1021/cr000664rhttp://doi.org/10.1021/cr000664r .
Ackermann L . Chem Rev , 2011 . 111 1315 - 1345 . DOI:10.1021/cr100412jhttp://doi.org/10.1021/cr100412j .
Gorelsky S I, Lapointe D, Fagnou K . J Am Chem Soc , 2008 . 130 10848 - 10849 . DOI:10.1021/ja802533uhttp://doi.org/10.1021/ja802533u .
Geng Y H, Huang L, Wu S P, Wang F S . Sci China Chem , 2010 . 53 1620 - 1633 . DOI:10.1007/s11426-010-4048-2http://doi.org/10.1007/s11426-010-4048-2 .
Yokozawa T, Ohta Y . Chem Rev , 2016 . 116 1950 - 1968 . DOI:10.1021/acs.chemrev.5b00393http://doi.org/10.1021/acs.chemrev.5b00393 .
Dou J, Chen Z, Ma C . Synth Met , 2014 . 196 117 - 124 . DOI:10.1016/j.synthmet.2014.07.022http://doi.org/10.1016/j.synthmet.2014.07.022 .
Pouliot J R, Wakioka M, Ozawa F, Li Y, Leclerc M . Macromol Chem Phys , 2016 . 217 1493 - 1500 . DOI:10.1002/macp.v217.13http://doi.org/10.1002/macp.v217.13 .
Rudenko A E, Wiley C A, Tannaci J F, Thompson B C . J Polym Sci, Part A: Polym Chem , 2013 . 51 2660 - 2668 . DOI:10.1002/pola.26655http://doi.org/10.1002/pola.26655 .
Rudenko A E, Thompson B C . Macromolecules , 2015 . 48 569 - 575 . DOI:10.1021/ma502131khttp://doi.org/10.1021/ma502131k .
Rudenko A E, Thompson B C . J Polym Sci, Part A: Polym Chem , 2015 . 53 2494 - 2500 . DOI:10.1002/pola.27712http://doi.org/10.1002/pola.27712 .
Okamoto K, Housekeeper J B, Michael F E, Luscombe C K . Polym Chem , 2013 . 4 3499 - 3506 . DOI:10.1039/c3py00412khttp://doi.org/10.1039/c3py00412k .
Bura T, Morin P O, Leclerc M . Macromolecules , 2015 . 48 5614 - 5620 . DOI:10.1021/acs.macromol.5b01372http://doi.org/10.1021/acs.macromol.5b01372 .
Lombeck F, Komber H, Gorelsky S I, Sommer M . ACS Macro Lett , 2014 . 3 819 - 823 . DOI:10.1021/mz5004147http://doi.org/10.1021/mz5004147 .
Shi X C, Sui A G, Wang Y X, Li Y S, Geng Y H, Wang F S . Chem Commun , 2015 . 51 2138 - 2140 . DOI:10.1039/C4CC08012Bhttp://doi.org/10.1039/C4CC08012B .
Berrouard P, Najari A, Pron A, Gendron D, Morin P O, Pouliot J R, Veilleux J, Leclerc M . Angew Chem Int Ed , 2012 . 51 2068 - 2071 . DOI:10.1002/anie.201106411http://doi.org/10.1002/anie.201106411 .
Matsidik R, Komber H, Luzio A, Caironi M, Sommer M . J Am Chem Soc , 2015 . 137 6705 - 6711 . DOI:10.1021/jacs.5b03355http://doi.org/10.1021/jacs.5b03355 .
Matsidik R, Komber H, Sommer M. . ACS Macro Lett , 2015 . 4 1346 - 1350 . DOI:10.1021/acsmacrolett.5b00783http://doi.org/10.1021/acsmacrolett.5b00783 .
Guo Q, Dong J, Wan D, Wu D, You J S . Macromol Rapid Commun , 2013 . 34 522 - 527 . DOI:10.1002/marc.v34.6http://doi.org/10.1002/marc.v34.6 .
Wang K, Wang G, Wang M . Macromol Rapid Commun , 2015 . 36 2162 - 2170 . DOI:10.1002/marc.201500377http://doi.org/10.1002/marc.201500377 .
Broll S, Nübling F, Luzio A, Lentzas D, Komber H, Caironi M, Sommer M . Macromolecules , 2015 . 48 7481 - 7488 . DOI:10.1021/acs.macromol.5b01843http://doi.org/10.1021/acs.macromol.5b01843 .
Pouliot J R, Sun B, Leduc M, Najari A, Li Y, Leclerc M . Polym Chem , 2015 . 6 278 - 282 . DOI:10.1039/C4PY01222Dhttp://doi.org/10.1039/C4PY01222D .
Lafrance M, Rowley C N, Woo T K, Fagnou K . J Am Chem Soc , 2006 . 128 8754 - 8756 . DOI:10.1021/ja062509lhttp://doi.org/10.1021/ja062509l .
Bura T, Beaupré S, Ibraikulov O A, Légaré M A, Quinn J, Lévêque P, Heiser T, Li Y, Leclerc N, Leclerc M . Macromolecules , 2017 . 50 7080 - 7090 . DOI:10.1021/acs.macromol.7b01198http://doi.org/10.1021/acs.macromol.7b01198 .
Bura T, Beaupré S, Légaré M A, Quinn J, Rochette E, Blaskovits J T, Fontaine F G, Pron A, Li Y, Leclerc M . Chem Sci , 2017 . 8 3913 - 3925 . DOI:10.1039/C7SC00589Jhttp://doi.org/10.1039/C7SC00589J .
Huang H, Yang L, Facchetti A, Marks T J . Chem Rev , 2017 . 117 10291 - 10318 . DOI:10.1021/acs.chemrev.7b00084http://doi.org/10.1021/acs.chemrev.7b00084 .
Lei T, Dou J H, Ma Z J, Yao C H, Liu C J, Wang J Y, Pei J . J Am Chem Soc , 2012 . 134 20025 - 20028 . DOI:10.1021/ja310283fhttp://doi.org/10.1021/ja310283f .
Lei T, Xia X, Wang J Y, Liu C J, Pei J . J Am Chem Soc , 2014 . 136 2135 - 2141 . DOI:10.1021/ja412533dhttp://doi.org/10.1021/ja412533d .
Zheng Y Q, Lei T, Dou J H, Xia X, Wang J Y, Liu C J, Pei J . Adv Mater , 2016 . 28 7213 - 7219 . DOI:10.1002/adma.201600541http://doi.org/10.1002/adma.201600541 .
Kim H G, Kang B, Ko H, Lee J, Shin J, Cho K . Chem Mater , 2015 . 27 829 - 838 . DOI:10.1021/cm503864uhttp://doi.org/10.1021/cm503864u .
Gao Y, Zhang X J, Tian H K, Zhang J D, Yan D H, Geng Y H, Wang F S . Adv Mater , 2015 . 27 6753 - 6759 . DOI:10.1002/adma.201502896http://doi.org/10.1002/adma.201502896 .
Gao Y, Bai J H, Sui Y, Han Y, Deng Y F, Tian H K, Geng Y H, Wang F S . Macromolecules , 2018 . 51 8752 - 8760 . DOI:10.1021/acs.macromol.8b01112http://doi.org/10.1021/acs.macromol.8b01112 .
Song H, Deng Y F, Gao Y, Jiang Y, Tian H K, Yan D H, Geng Y H, Wang F S . Macromolecules , 2017 . 50 2344 - 2353 . DOI:10.1021/acs.macromol.6b02781http://doi.org/10.1021/acs.macromol.6b02781 .
Gao Y, Deng Y F, Tian H K, Zhang J D, Yan D H, Geng Y H, Wang F S . Adv Mater , 2017 . 29 1606217 DOI:10.1002/adma.201606217http://doi.org/10.1002/adma.201606217 .
Guo K, Bai J H, Jiang Y, Wang Z L, Sui Y, Deng Y F, Han Y, Tian H K, Geng Y H . Adv Funct Mater , 2018 . 31 1801097 .
Chen F Z, Jiang Y, Sui Y, Zhang J D, Tian H K, Han Y, Deng Y F, Hu W P, Geng Y H . Macromolecules , 2018 . 51 8652 - 8661 . DOI:10.1021/acs.macromol.8b01885http://doi.org/10.1021/acs.macromol.8b01885 .
0
Views
50
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution