Waterborne polyurethane (WPU)/polydopamine (PDA) nanoparticle composites were successfully fabricated
via in situ
polymerization and effects of PDA nanoparticles on thermal properties
mechanical properties and anti-ultraviolet aging properties of WPU were investigated. Firstly
PDA nanoparticles with an average size of 150 nm were synthesized through spontaneous oxidation polymerization of dopamine hydrochloride in sodium hydroxide (NaOH) solution at 50 °C for 5 h under stirring. And it was retained in aqueous dispersion. Then
isophoeone diisocyanate (IPDI)
polytetrahydrofuran diol (PTMG-1000)
2
2-dimethylol propionic acid (DMPA) were reacted to prepare the hydrophilic poliurethane prepolymer at 80 °C for 2 h under stirring
and then PDA nanoparticles in aqueous dispersion were added into the prepolymer to emulsify simultaneously for 30 min. Finally
1
4-butanediol (BDO) was used as a small molecule chain extender to prepare WPU/PDA composites. It was found that both the thermostability and mechanical properties of WPU is enchanced by the addition of PDA nanoparticles. Especially when the concentration of PDA nanoparticles is 0.5 wt%
the initial degradation temperature of WPU/PDA composites is enhanced by 22.7 °C
and the tensile strength and Young’s modulus is increased by 37% and 78%
respectively
compared with pure WPU. Meanwhile
with the addition of PDA nanoparticles
the formation of cracks on the surface of WPU after ultraviolet irradiation is obviously hindered
and the decline of thermostability caused by ultraviolet irradiation is effectively suppressed. This can be mainly attributed to the impediment of the bond breakage during the ultraviolet irradiation due to the interaction of PDA nanoparticles with the urethane bonds and urea bonds of the hard segment of WPU.
Zhang S W, Zhang D D, Zhen L, Yang Y F, Meng S, Kong Z W, Yang W, Bai H Y, Dong W F . JCT Res , 2018 . 15 ( 6 ): 1333 - 1341.
Zhen Z, Luo S, Kai Y, Wu X J, Ren T B. . RSC Adv , 2017 . 7 ( 67 ): 42296 - 42304 . DOI:10.1039/C7RA08464Ahttp://doi.org/10.1039/C7RA08464A .
Kim B K, Seo J W, Han M J . Eur Polym J , 2003 . 39 ( 1 ): 85 - 91 . DOI:10.1016/S0014-3057(02)00173-8http://doi.org/10.1016/S0014-3057(02)00173-8 .
Rageh M M, Elgebaly R H. . Mutat Res Genet Toxicol Environ Mutagen , 2018 . 828 15 - 22 . DOI:10.1016/j.mrgentox.2018.01.009http://doi.org/10.1016/j.mrgentox.2018.01.009 .
Xiao M, Hu Z Y, Wang Z, Li Y W, Tormo A D, Le Thomas N, Wang B X, Gianneschi N C, Shawkey M D, Dhinojwala A. . Sci Adv , 2017 . 3 ( 9 ): e1701151 DOI:10.1126/sciadv.1701151http://doi.org/10.1126/sciadv.1701151 .
Wang Y, Li T, Wang X F, Ma P M, Bai H Y, Dong W F, Xie Y, Chen M Q. . Biomacromolecules , 2016 . 17 ( 11 ): 3782 - 3789 . DOI:10.1021/acs.biomac.6b01298http://doi.org/10.1021/acs.biomac.6b01298 .
Shanmuganathan K, Cho J H, Iyer P, Baranowitz S, Ellison C J. . Macromolecules , 2016 . 44 ( 24 ): 9499 - 9507.
Ju K Y, Lee Y, Lee S, Park S B, Lee J K. . Biomacromolecules , 2011 . 12 ( 3 ): 625 - 632 . DOI:10.1021/bm101281bhttp://doi.org/10.1021/bm101281b .
Phua S L, Yang L, Toh C L, Huang S, Tsakadze Z, Lau S K, Mai Y W, Lu X. . ACS Appl Mater Interfaces , 2012 . 4 ( 9 ): 4571 - 4578 . DOI:10.1021/am300947bhttp://doi.org/10.1021/am300947b .
Pei A, Malho J M, Ruokolainen J, Zhou Q, Berglund L A. . Macromolecules , 2011 . 44 ( 11 ): 4422 - 4427 . DOI:10.1021/ma200318khttp://doi.org/10.1021/ma200318k .
Yao X L, Qi X D, He Y L, Tan D S, Chen F, Fu Q. . ACS Appl Mater Interfaces , 2014 . 6 ( 4 ): 2497 - 2507 . DOI:10.1021/am4056694http://doi.org/10.1021/am4056694 .
Saralegi A, Fernandes S C M, Alonsovarona A, Palomares T, Foster E J, Weder C, Eceiza A, Corcuera M A. . Biomacromolecules , 2013 . 14 ( 12 ): 4475 - 4482 . DOI:10.1021/bm401385chttp://doi.org/10.1021/bm401385c .
Mahmood K, Zia K M, Aftab W, Zuber M, Tabasum S, Noreen A, Zia F. . Int J Biol Macromol , 2018 . 113 150 - 158 . DOI:10.1016/j.ijbiomac.2018.01.031http://doi.org/10.1016/j.ijbiomac.2018.01.031 .
Xi Z Y, Xu Y Y, Zhu L P, Wang Y, Zhu B K. . J Memb Sci , 2009 . 327 ( 1 ): 244 - 253.
Liu Y L, Ai K L, Lu L H. . Chem Rev , 2014 . 114 ( 9 ): 5057 - 5115 . DOI:10.1021/cr400407ahttp://doi.org/10.1021/cr400407a .
Sheng W B, Li W, Zhang G X, Tong Y B, Liu Z Y, Jia X. . New J Chem , 2015 . 39 ( 4 ): 2752 - 2757 . DOI:10.1039/C4NJ01744Ghttp://doi.org/10.1039/C4NJ01744G .
Wang Y, Wang Z, Ma P M, Bai H Y, Dong W F, Xie Y, Chen M Q. . RSC Adv , 2015 . 5 ( 89 ): 72691 - 72698 . DOI:10.1039/C5RA12333Jhttp://doi.org/10.1039/C5RA12333J .
Bandyopadhyay P, Nguyen T T, Li X, Kim N H, Lee J H. . Compos Part B-Eng , 2017 . 117 101 - 110 . DOI:10.1016/j.compositesb.2017.02.035http://doi.org/10.1016/j.compositesb.2017.02.035 .
Yu R L, Raghu A V, Han M J, Kim B K. . Macromol Chem Phys , 2010 . 210 ( 15 ): 1247 - 1254.
Cao X, Dong H, Li C M. . Biomacromolecules , 2007 . 8 ( 3 ): 899 - 904 . DOI:10.1021/bm0610368http://doi.org/10.1021/bm0610368 .
Wu S L, Shi T J, Zhang L Y. . High Perform Polym , 2015 . 28 ( 4 ): 61 - 62.
Han Y T, Cheng Z, Dong W, Zhang F, Xin Z Y. . J Thermoplast Compos , 2015 . 30 ( 1 ): 107 - 120.
Zhang Y H, Xia Z B, Huang H, Chen H Q. . J Anal Appl Pyrolys , 2009 . 84 ( 1 ): 89 - 94 . DOI:10.1016/j.jaap.2008.11.008http://doi.org/10.1016/j.jaap.2008.11.008 .
Meredith P, Sarna T. . Pigm Cell Melanoma R , 2010 . 19 ( 6 ): 572 - 594.
Stępień K, Dzierżęga-Lęcznar A, Kurkiewicz S, Tam I. . J Am Soc Mass Spectrom , 2009 . 20 ( 3 ): 464 - 468 . DOI:10.1016/j.jasms.2008.11.003http://doi.org/10.1016/j.jasms.2008.11.003 .
Perrin F X, Irigoyen M, Aragon E, Vernet J L. . Polym Degrad Stab , 2000 . 70 ( 3 ): 469 - 475 . DOI:10.1016/S0141-3910(00)00143-9http://doi.org/10.1016/S0141-3910(00)00143-9 .
Wilhelm C, Gardette J L. . Polymer , 1997 . 38 ( 16 ): 4019 - 4031 . DOI:10.1016/S0032-3861(96)00984-6http://doi.org/10.1016/S0032-3861(96)00984-6 .
Zhang B, Sun Z, Bai Y T, Zhuang H Q, Ge D T, Shi W, Sun Y N. . RSC Adv , 2016 . 6 ( 82 ): 78378 - 78384 . DOI:10.1039/C6RA12307Dhttp://doi.org/10.1039/C6RA12307D .
Dong W F, Wang Y, Huang C Q, Xiang S F, Ma P M, Ni Z B, Chen M Q. . J Therm Anal Calorim , 2014 . 115 ( 2 ): 1661 - 1668 . DOI:10.1007/s10973-013-3419-2http://doi.org/10.1007/s10973-013-3419-2 .
Glassy Hydrogels: From New State to High Performances of Gel Materials
Hydrogen-bonded Supramolecular Polymeric Materials: From Structure and Performance to Functionality and Application
Mechanical Properties and Mullins Effect of Ethylene Propylene Diene Monomer Vulcanizes Reinforced with Silica Powders with Different Micropore Structures
Strong and Tough Chitosan Aerogels via Hofmeister Effect
Progress on Intrinsically Flame-retardant Bio-based Epoxy Thermosets
Related Author
No data
Related Institution
College of Materials Science and Engineering, Qingdao University
Department of Polymer Science and Engineering, Zhejiang University
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University
Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
Zheda Institute of Advanced Materials and Chemical Engineering