particles with thermosensitive conductivity were prepared
via
two-step radical polymerization. Copolymerization of styrene (St) and
N
-isopropylacrylamide (NIPAM) was performed on the surface of modified magnetic ferroferric oxide (Fe
3
O
4
) to afford P(St-NIPAM)/Fe
3
O
4
particles
and PANI/P(St-NIPAM)/Fe
3
O
4
compounded particles were obtained thereafter from
in situ
oxidation polymerization of aniline inside the particles. Serial characterization including scanning electron microscopy (SEM)
thermogravimetric analysis (TG)
and infrared (IR) spectroscopy indicated that as-prepared particles possessed a core-shell structure
and the content of PANI in particles was closely related to the dosage of NIPAM in polymerization. In addition
dynamic light scattering (DLS) revealed the thermo-responsiveness of particle hydrodynamic diameter. Electrical conductivity of these magnetic particles was investigated in detail
and was found adjustable by the particle composition. Specifically
the conductivity of composite particle solution was enhanced from 58.4 μS/cm to 860 μS/cm when the monomer feed ratio was fixed during polymerization but the ratio of polymer shell to Fe
3
O
4
was changed from 1:1 to 10:1. Meanwhile
the solution conductivity at 25 °C increased gradually from 698 μS/cm to 1120 μS/cm by raising the NIPAM/styrene ratio from 2 mol% to 10 mol% while keeping the ratio of Fe
3
O
4
to total monomer amount at 1:10. Further measurement at 50 °C displayed a decreased conductivity for all PANI/P(St-NIPAM)/Fe
3
O
4
particle solutions regardless of the varied NIPAM/styrene ratio
namely
the composite particles were proved with significant thermosensitivity in terms of their electrical conductivity. A relationship was thereby established between the temperature-sensitivity of particle conductivity and the thermal responsiveness of PNIPAM-induced volumetric change. These smart conductive particles bear huge potentials for extensive applications in biological imaging
Chen J, Miao Y, He N, Wu X, Li S . Biotechnol Adv , 2004 . 22 ( 7 ): 505 - 518 . DOI:10.1016/j.biotechadv.2004.03.004http://doi.org/10.1016/j.biotechadv.2004.03.004 .
Wu H, Yu G, Pan L, Liu N, McDowell M T, Bao Z, Cui Y . Nat Commun , 2013 . 4 1943 DOI:10.1038/ncomms2941http://doi.org/10.1038/ncomms2941 .
Hou J, Liu Z, Zhang P . J Power Sources , 2013 . 224 139 - 144 . DOI:10.1016/j.jpowsour.2012.09.091http://doi.org/10.1016/j.jpowsour.2012.09.091 .
Wu J, Pan Z, Zhang Y, Wang B, Peng H . J Mater Chem A , 2018 . 6 12932 - 12944 . DOI:10.1039/C8TA03968Bhttp://doi.org/10.1039/C8TA03968B .
Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L C . J Phys Chem C , 2011 . 115 23584 - 23590 . DOI:10.1021/jp203852phttp://doi.org/10.1021/jp203852p .
Zhou Y, Chen J, Li J T, Lin Z B, Sun S G . J Mater Chem A , 2018 . 6 14091 - 14102 . DOI:10.1039/C8TA04057Ehttp://doi.org/10.1039/C8TA04057E .
Antensteiner M, Khorrami M, Fallahianbijan F, Borhan A, Abidian M R . Adv Mater , 2017 . 29 ( 39 ): 1702576 DOI:10.1002/adma.201702576http://doi.org/10.1002/adma.201702576 .
Zhang W L, Park B J, Choi H J . Chem Commun , 2010 . 46 5596 - 5598 . DOI:10.1039/c0cc00557fhttp://doi.org/10.1039/c0cc00557f .
Park M-K, Onishi K, Locklin J, Caruso F, Advincula R C . Langmuir , 2003 . 19 ( 20 ): 8550 - 8554 . DOI:10.1021/la034827thttp://doi.org/10.1021/la034827t .
Liu Y D, Park B J, Kim Y H, Choi H J . J Mater Chem , 2011 . 21 ( 43 ): 17396 - 17402 . DOI:10.1039/c1jm12443ahttp://doi.org/10.1039/c1jm12443a .
Fan W, Zhang C, Tjiu W W, Pramoda K P, He C, Liu T . ACS Appl Mater Interfaces , 2013 . 5 3382 - 3391 . DOI:10.1021/am4003827http://doi.org/10.1021/am4003827 .
Sun G, Dong B, Cao M, Wei B, Hu C . Chem Mater , 2011 . 23 ( 6 ): 1587 - 1593 . DOI:10.1021/cm103441uhttp://doi.org/10.1021/cm103441u .
Jagadeesh R V, Surkus A, Junge H, Pohl M M, Radnik J, Rabeah J, Huan H, Schunemann V, Bruckner A, Beller M . Science , 2013 . 342 ( 6162 ): 1073 - 1076 . DOI:10.1126/science.1242005http://doi.org/10.1126/science.1242005 .
Zheng H, Shao H P, Lin T, Zhao Z F, Guo Z M . Rare Metals , 2016 . 37 ( 9 ): 803 - 807.
Taylor E N, Webster T J . Int J Nanotechnol , 2011 . 8 21 - 35 . DOI:10.1504/IJNT.2011.037168http://doi.org/10.1504/IJNT.2011.037168 .
Mahmoudi M, Milani A S, Stroeve P . Int J Biomed Nanosci Nanotechnol , 2010 . 1 164 - 201 . DOI:10.1504/IJBNN.2010.034651http://doi.org/10.1504/IJBNN.2010.034651 .
Zhang Keying(张克营), Zhang Na(张娜), Wang Hongyan(王红艳), Xu Jigui(徐基贵), Shi Hongwei(史洪伟), Wang Rui(汪瑞), Liu Qiao(刘乔), Liu Chao(刘超), Wang Cong(王聪), Geng Tao(耿涛) . 分析实验室 , Chinese Journal of Analysis Laboratory , 2018 . 37 ( 7 ): 813 - 815.
Shi Y, Ma C, Peng L, Yu G . Adv Funct Mater , 2015 . 25 ( 8 ): 1219 - 1225 . DOI:10.1002/adfm.v25.8http://doi.org/10.1002/adfm.v25.8 .
Li K, Chen X, Wang Z, Xu L, Fu W, Zhao L, Chen L . Polym Compos , 2017 . 38 ( 4 ): 708 - 718 . DOI:10.1002/pc.23630http://doi.org/10.1002/pc.23630 .
Chen C W, Chen M Q, Serizawa T, Akashi M . Adv Mater , 1998 . 10 ( 14 ): 1122 - 1126 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Rivero R E, Molina M A, R..Rivarola C R, Barbero C A . Sensor Actuat B-Chem , 2014 . 190 270 - 278 . DOI:10.1016/j.snb.2013.08.054http://doi.org/10.1016/j.snb.2013.08.054 .
Ahmad H, Rashid M, Rahman M M, Miah M A J, Tauer K, Gafur M A . Polym Int , 2014 . 63 ( 4 ): 667 - 673 . DOI:10.1002/pi.2014.63.issue-4http://doi.org/10.1002/pi.2014.63.issue-4 .
Preparation and Investigation of Conductive Hydrogels of Polyacrylamide-g-Polyaniline
A Brief Analysis of the Conductivity of DNA
A Non-printed Polyaniline-based Integrated Circuit Textile for Simultaneously Sweat Acid-base Monitoring and Early Warning Judgment
Dual-action Self-healing Anticorrosive Coating Based on Polyaniline Microcapsules
Controllable Synthesis and Catalysis Application of Conducting Polymer/Noble Metal Nanoparticle Hybrids
Related Author
No data
Related Institution
Key Laboratory of Soft Matter Chemistry, Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China
Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences
School of Life Science, Inner Mongolia University
College of Chemistry and Molecular Engineering, Peking University
College of Chemistry and Chemical Engineering, Chongqing University