high thermal conductive polyimide (PI) composites with reduced graphene oxide (rGO) as filler were prepared. In order to improve the thermal conductivity of rGO in the PI composites
rGO should form heat conductive paths in PI matrix
and the in-plane direction of rGO should be consistent with the heat dissipation direction of composite materials. Therefore
three-dimensional rGO networks (3DrGO) were prepared by freeze-drying technology to construct an effective thermal conductive path in PI matrix. In order to stabilize 3DrGO networks during the preparation process of PI composites
the 3DrGO networks were adhered and reinforced by PI. The process includes: (1) the rGO dispersion containing 3 wt% polyamide acid (PAA) was freeze-dried to prepare the PAA-reinforced 3DrGO network (3DrGO-PAA); (2) the 3DrGO-PAA was treated by thermal imidization to obtain the PI-reinforced 3DrGO network (3DrGO-PI); (3) 10 wt% PAA was cast onto the 3DrGO-PI template and imidized at 100
200
and 350 °C for 1 h
respectively
at each temperature to obtain the 3DrGO-PI/PI composite films. The 3DrGO-PI/PI composite film exhibits the thermal conductivity of 1.57 W·m
−1
·K
−1
with 8 wt% rGO (772% enhancement compared to that of neat PI film). Whereas the PI composite films with random distributed rGO (rGO/PI composite film) or unreinforced 3DrGO (3DrGO-water/PI composite film) only exhibit the thermal conductivity of 0.51 W·m
−1
·K
−1
(183% enhancement compared to that of neat PI film) or 1.02 W·m
−1
·K
−1
(467% enhancement compared to that of neat PI film)
respectively. All the composite films maintain very good thermal stabilities. The
T
d5%
(thermal decomposition temperature at 5 wt% weight loss) values of the composite films are higher than that at 540 °C. Compared with that of neat PI
the
T
g
s of the composite films are slightly enhanced and relatively higher (higher than 390 °C). The coefficient of thermal expansion (CTE) of the composite films can be greatly decreased by the addition of 3DrGO. The CTE of 3DrGO-PI/PI composite film is as low as 2.16 × 10
Ge J J, Li C Y, Xue G, Mann I K, Zhang D, Wang S Y, Harris F W, Cheng S Z D, Hong S C, Zhuang X W, Shen Y R . J Am Chem Soc , 2001 . 123 5768 - 5776 . DOI:10.1021/ja0042682http://doi.org/10.1021/ja0042682 .
Lim H, Cho W J, Ha C S, Ando S, Kim Y K, Park C H, Lee K . Adv Mater , 2002 . 14 1275 - 1279 . DOI:10.1002/1521-4095(20020916)14:18<1275::AID-ADMA1275>3.0.CO;2-Yhttp://doi.org/10.1002/1521-4095(20020916)14:18<1275::AID-ADMA1275>3.0.CO;2-Y .
Yang Tingting(杨婷婷), Zhou Zhuxin(周竹欣), Zhang Yi(张艺), Liu Siwei(刘四委), Chi Zhenguo(池振国), Xu Jiarui(许家瑞) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 3 ): 411 - 428.
Zu Mengyi(祖梦祎), Ke Ying(柯颖), Qi Shengli(齐胜利), Yang Huichuan(杨汇川), Tian Guofeng(田国峰), Wu Dezhen(武德珍) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 5 ): 617 - 623.
Prasher R . Phys Rev B , 2008 . 77 075424 DOI:10.1103/PhysRevB.77.075424http://doi.org/10.1103/PhysRevB.77.075424 .
Derue L, Dautel O, Tournebize A, Drees M, Pan H, Berthumeyrie S, Pavageau B, Cloutet E, Chambon S, Hirsch L, Rivaton A, Hudhomme P, Facchetti A, Wantz G . Adv Mater , 2014 . 26 5831 - 5838 . DOI:10.1002/adma.v26.33http://doi.org/10.1002/adma.v26.33 .
Moore A L, Shi L . Mater Today , 2014 . 17 163 - 174 . DOI:10.1016/j.mattod.2014.04.003http://doi.org/10.1016/j.mattod.2014.04.003 .
Yan W, Zhang Y, Sun H W, Liu S W, Chi Z G, Chen X C, Xu J R . J Mater Chem A , 2014 . 2 20958 - 20965 . DOI:10.1039/C4TA04663Chttp://doi.org/10.1039/C4TA04663C .
Xu L B, Chen G F, Wang W, Li L, Fang X Z . Composites Part A , 2016 . 84 472 - 481 . DOI:10.1016/j.compositesa.2016.02.027http://doi.org/10.1016/j.compositesa.2016.02.027 .
Ren P G, Hou S Y, Ren F, Zhang Z P, Sun Z F, Xu L . Composites Part A , 2016 . 90 13 - 21 . DOI:10.1016/j.compositesa.2016.06.019http://doi.org/10.1016/j.compositesa.2016.06.019 .
Han W F, Bai Y F, Liu S C, Ge C H, Wang L X, Ma Z Y, Yang Y X, Zhang X D . Composites Part A , 2017 . 102 218 - 227 . DOI:10.1016/j.compositesa.2017.08.012http://doi.org/10.1016/j.compositesa.2017.08.012 .
Kim K, Yoo M, Ahn K, Kim J . Ceram Int , 2015 . 41 179 - 187 . DOI:10.1016/j.ceramint.2014.08.056http://doi.org/10.1016/j.ceramint.2014.08.056 .
Kim K, Kim J . Composites Part B , 2016 . 93 67 - 74 . DOI:10.1016/j.compositesb.2016.02.052http://doi.org/10.1016/j.compositesb.2016.02.052 .
Yin L Y, Zhou X G, Yu J S, Wang H L, Ran C C . Composites Part A , 2016 . 90 626 - 632 . DOI:10.1016/j.compositesa.2016.08.022http://doi.org/10.1016/j.compositesa.2016.08.022 .
Ramdani N, Derradji M, Feng T T, Tong Z, Wang J, Mokhnache E O, Liu W B . Mater Lett , 2015 . 155 34 - 37 . DOI:10.1016/j.matlet.2015.04.097http://doi.org/10.1016/j.matlet.2015.04.097 .
Xu R J, Chen M Y, Zhang F, Huang X R, Luo X G, Lei C H, Lu S G, Zhang X Q . Compos Sci Technol , 2016 . 133 111 - 118 . DOI:10.1016/j.compscitech.2016.07.031http://doi.org/10.1016/j.compscitech.2016.07.031 .
Sun R H, Yao H, Zhang H B, Li Y, Mai Y W, Yu Z Z . Compos Sci Technol , 2016 . 137 16 - 23 . DOI:10.1016/j.compscitech.2016.10.017http://doi.org/10.1016/j.compscitech.2016.10.017 .
Xia J W, Zhang G P, Deng L B, Yang H P, Sun R, Wong C P . RSC Adv , 2015 . 5 19315 - 19320 . DOI:10.1039/C5RA00718Fhttp://doi.org/10.1039/C5RA00718F .
Shahil K M F, Balandin A A . Nano Lett , 2012 . 12 861 - 867 . DOI:10.1021/nl203906rhttp://doi.org/10.1021/nl203906r .
Pop E, Varshney V, Roy A K . MRS Bull , 2012 . 37 1273 DOI:10.1557/mrs.2012.203http://doi.org/10.1557/mrs.2012.203 .
Lian G, Tuan C C, Li L Y, Jiao S L, Wang Q L, Moon K S, Cui D L, Wong C P . Chem Mater , 2016 . 28 6096 - 6104 . DOI:10.1021/acs.chemmater.6b01595http://doi.org/10.1021/acs.chemmater.6b01595 .
Hummers J W S, Offeman R E . J Am Chem Soc , 1958 . 80 1339 DOI:10.1021/ja01539a017http://doi.org/10.1021/ja01539a017 .
Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M . J Mater Chem , 2011 . 21 13569 - 13575 . DOI:10.1039/c1jm11766ahttp://doi.org/10.1039/c1jm11766a .
Zhang Libin(张立斌), Wang Jinqing(王金清), Yang Shengrong(杨生荣), Kong Xiangzheng(孔祥正). Acta Polymerica Sinica(高分子学报), 2014, (11): 1472-1478
Dong X C, Chen J, Ma Y W, Wang J, Chan-Park M B, Liu X M, Wang L H, Huang W, Chen P . Chem Commun , 2012 . 48 10660 DOI:10.1039/c2cc35844ahttp://doi.org/10.1039/c2cc35844a .
McAllister M J, Li J L, Adamson D H . Chem Mater , 2007 . 18 4396 - 4404.
Li D, Mueller M B, Gilje S . Nat Nanotechnol , 2008 . 2 101 - 105.
Erickson K, Erni R, Lee Z . Adv Mater , 2010 . 40 4467 - 4472.
Gilje S, Han S, Wang M . Nano Lett , 2007 . 11 3394 - 3398.
Tung V C, Allen M J, Yang Y . Nat Nanotechnol , 2009 . 1 25 - 29.
Wei S Y, Yu Q X, Fan Z G, Liu S W, Chi Z G, Chen X D, Zhang Y, Xu J R . RSC Adv , 2018 . 8 22169 - 22176 . DOI:10.1039/C8RA00827Bhttp://doi.org/10.1039/C8RA00827B .
Preparation and Properties of Composite Proton Exchange Membranes from Tröger's Base-based Polyimides/Polybenzimidazoles for Fuel Cells Operating in a Wide Temperature Range
Preparation and Performance of Thermally Rearranged Gas Separation Membranes Containing Tetraarylimidazole Structure
Preparation, Processing and Thermal Properties of Naphthaleneethynyl-terminated Silica-containing Polyimides
Preparation of Colorless Transparent Polyimide Films with High Comprehensive Properties
Preparation and Properties of Colorless Transparent Polyimide Films Based on Rigid Alicyclic Tetracarboxylic Anhydride
Related Author
No data
Related Institution
School of Chemical Engineering, University of Chinese Academy of Sciences
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences
Chemistry and Environmental Engineering, Yangtze University
Carbon Research Laboratory, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
School of Chemical Engineering, University of Science and Technology Liaoning