The flame retardancy of poly(lactic acid) (PLA) was for the first time improved by a synergistic effect between octaphenyl silsesquioxane (OPS) the organic-inorganic hybrid and ammonium polyphosphate (APP) the inorganic phosphorus-based flame retardant. PLA/OPS
PLA/APP
and PLA/OPS+APP composites fabricated by twin-screw melt blending were subjected to a series of characterizations
including vertical test
cone calorimetry
and limiting oxygen index measurements. Remarkable enhancement was achieved for the flame retardant properties of PLA/OPS+APP
as OPS and APP could reduce synergistically the heat release rate (HRR) of PLA. Dispersion of OPS and APP in the PLA matrix was observed by scanning electron microscopy (SEM)
while thermal stability of the composites prepared was studied
via
thermogravimetric analysis (TGA). For an in-depth understanding of the combustion process
morphology and elemental composition of the char residues after cone calorimetry test were further investigated through SEM
energy dispersive X-ray spectrometry
and X-ray photoelectron spectroscopy. Results showed that both OPS and APP were uniformly distributed in the PLA matrix. Besides
the initial decomposition processes of APP and PLA were in good accordance with each other
while the thermal decomposition process of OPS agreed well with that of APP at high temperature; such matching decomposition processes and synergism between OPS and APP gave rise to an improved thermal stability of the PLA composites prepared. Apart from the reduction of HRR peak
OPS/APP synergy could diminish significantly the retardant-induced smoke release while maintaining a satisfactory tensile performance for the PLA material. Finally
underlying mechanisms of the specific combustion process were tentatively proposed for the three kinds of flame-retardant PLA composites.
Lv Shanshan(吕闪闪), Tan Haiyan(谭海彦), Zuo Yingfeng(左迎峰), Gu Jiyou(顾继友), Zhang Yanhua(张彦华) . 化工进展 , Chemical Industry and Engineering Progress , 2014 . 33 ( 11 ): 2975 - 2981.
Xuan S, Hu Y, Song L, Wang X, Yang H, Lu H . Combust Sci Technol , 2012 . 184 ( 4 ): 456 - 468 . DOI:10.1080/00102202.2011.648032http://doi.org/10.1080/00102202.2011.648032 .
Ye L, Ren J, Cai S, Wang Z, Li J . Chinese J Polym Sci , 2016 . 34 ( 6 ): 785 - 796 . DOI:10.1007/s10118-016-1799-zhttp://doi.org/10.1007/s10118-016-1799-z .
Zhang W, Camino G, Yang R . Prog Polym Sci , 2017 . 67 77 - 125 . DOI:10.1016/j.progpolymsci.2016.09.011http://doi.org/10.1016/j.progpolymsci.2016.09.011 .
Jia L, Zhang W C, Tong B, Yang R J . Chinese J Polym Sci , 2018 . 36 ( 7 ): 871 - 879 . DOI:10.1007/s10118-018-2098-7http://doi.org/10.1007/s10118-018-2098-7 .
Wei L L, Wang D Y, Chen H B, Chen L, Wang X, Wang Y Z . Polym Degrad Stab , 2011 . 96 ( 9 ): 1557 - 1561 . DOI:10.1016/j.polymdegradstab.2011.05.018http://doi.org/10.1016/j.polymdegradstab.2011.05.018 .
Li D F, Zhao X, Jia Y W, Wang X L, Wang Y Z . Compos Commun , 2018 . 8 52 - 57 . DOI:10.1016/j.coco.2018.04.001http://doi.org/10.1016/j.coco.2018.04.001 .
Chen Shimei(陈仕梅), Lai Fang(来方), Li Pei(李霈), Gong Wei(龚维), Fu Hai(付海), Yin Xiaogang(尹晓刚), Ban Daming(班大明) . 高分子学报 , Acta Polymerica Sinica , 2017 . ( 8 ): 1358 - 1365 . DOI:10.11777/j.issn1000-3304.2017.16350http://doi.org/10.11777/j.issn1000-3304.2017.16350 .
Wang, X, Xuan, S, Song, L, Yang, H, L u, H, Hu, Y . J Macromol Sci Part B Phys , 2012 . 51 ( 2 ): 255 - 268 . DOI:10.1080/00222348.2011.585334http://doi.org/10.1080/00222348.2011.585334 .
Butola B S, Joshi M, Kumar S . Fiber Polym , 2010 . 11 ( 8 ): 1137 - 1145 . DOI:10.1007/s12221-010-1137-yhttp://doi.org/10.1007/s12221-010-1137-y .
Zhang Y, He J, Yang R . Polym Degrad Stab , 2016 . 125 140 - 147 . DOI:10.1016/j.polymdegradstab.2015.12.007http://doi.org/10.1016/j.polymdegradstab.2015.12.007 .
Li L, Li X, Yang R . J Appl Polym Sci , 2012 . 124 ( 5 ): 3807 - 3814 . DOI:10.1002/app.v124.5http://doi.org/10.1002/app.v124.5 .
Tambe N, Di J, Zhang Z, Bernacki S, El-Shafei A, King M W . J Biomed Mater Res Part B , 2015 . 103 ( 6 ): 1188 - 1197 . DOI:10.1002/jbm.b.v103.6http://doi.org/10.1002/jbm.b.v103.6 .
Xu G, Cheng J, Wu H, Lin Z, Zhang Y, Wang H . Polym Compos , 2013 . 34 ( 1 ): 109 - 121 . DOI:10.1002/pc.v34.1http://doi.org/10.1002/pc.v34.1 .
Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G . Thermochim Acta , 2006 . 440 ( 1 ): 36 - 42 . DOI:10.1016/j.tca.2005.10.006http://doi.org/10.1016/j.tca.2005.10.006 .
Jansen R J J, Bekkum H V . Carbon , 1995 . 33 ( 8 ): 1021 - 1027 . DOI:10.1016/0008-6223(95)00030-Hhttp://doi.org/10.1016/0008-6223(95)00030-H .
Kachurin G A, Cherkova S G, Volodin V A, Kesler V G, Gutakovsky A K, Cherkov A G, Bublikov A V, Tetelbaum D I . Nucl Instrum Meth B , 2004 . 222 ( 3 ): 497 - 504.
Regulation of Polystyrene Blocks on Stereocomplex Crystallization Behavior of Poly(L-lactic acid)/Polystyrene-b-Poly(D-lactic acid) Blends
Synthesis of Phospholipidated Starch and Its Application for Flame-retardant Poly(lactic acid) with Ammonium Polyphosphate
Regulating the Crystallization Behaviors of High-molecular-weight Poly(lactic acid) Stereocomplex System Based on the Structure of Poly(ethylene glycol)
Preparation of Super-tough Poly(lactic acid) Using Malic Acid-based Copolyester via Reactive Blending
Related Author
No data
Related Institution
State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology
ZheJiang Shiny New Materials Co., Ltd.
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University
Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University