Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain
返回论文页
Research Article|更新时间:2021-01-26
|
Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain
Yun Yang, Lei Zhao, Shu-meng Wang, Jun-qiao Ding, Li-xiang Wang. Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain. [J]. Acta Polymerica Sinica 50(7):685-694(2019)
DOI:
Yun Yang, Lei Zhao, Shu-meng Wang, Jun-qiao Ding, Li-xiang Wang. Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain. [J]. Acta Polymerica Sinica 50(7):685-694(2019) DOI: 10.11777/j.issn1000-3304.2018.18266.
Synthesis and Characterization of Red-emitting Thermally Activated Delayed Fluorescent Polymers Based on Poly(2,7-carbazole-co-3,3′-dimethyldiphenyl ether) as the Main Chain
A series of red-emitting thermally activated delayed fluorescence (TADF) polymers based on poly(2
7-carbazole-
co
-3
3′ -dimethyldiphenyl ether) (PCzDMPE) main chains
including PCzDMPE-R03
PCzDMPE-R05
PCzDMPE-R07
and PCzDMPE-R10
have been designed and synthesized
via
Suzuki polycondensation. The thermally stable polymers possessed glass transition temperatures above 90 °C and decomposition temperatures above 410 °C
which is beneficial to the devices of long-term services. As the content of red TADF unit increased
the maximum emission was gradually red-shifted from 577 nm (PCzDMPE-R03) to 584 nm (PCzDMPE-R010)
while the film photoluminescence quantum yield (PLQY) dropped correspondingly from 0.47 to 0.21 according to the energy gap law. Meanwhile
they all exhibited an obviously delayed fluorescence with the lifetime of 145 – 161 μs
accompanied by a prompt fluorescence of 4.5 – 6.5 ns. For instance
the temperature-dependent transient photoluminescence spectra measured for PCzDMPE-R07 sample displayed an enhanced delayed fluorescence upon the temperature rise from 150 K to 300 K
indicative of its TADF nature. More importantly
compared with earlier reports of red TADF polymers based on poly(fluorene-
co
-3
3′-dimethyl diphenyl ether)
fluorene being replaced by carbazole in the present work could increase the highest occupied molecular orbital (HOMO) level and thus favor the hole injection. As a consequence
the turn-on voltage of PCzDMPE-R07 nondoped device was significantly reduced from 9.8 V to 5.2 V. PCzDMPE-R07 also outperformed the other candidates in terms of a maximum current efficiency of 3.35 cd/A and a maximum external quantum efficiency (EQE) of 2.03%. For performance optimization
a doped device was then fabricated by dispersing 20 wt% of PCzDMPE-R07 into the 1
3-bis(9H-carbazol-9-yl)benzene (mCP) matrix as an emitting layer. The corresponding current efficiency and EQE were further improved to 7.36 cd/A and 3.77%
respectively. To sum up
the copolymer containing carbazole and 3
3′-dimethyldiphenyl ether provides a favorable backbone framework for the design and synthesis of TADF polymers that possesses high efficiency and low driving voltage simultaneously.
Lin T A, Chatterjee T, Tsai W L, Lee W K, Wu M J, Jiao M, Pan K C, Yi C L, Chung C L, Wong K T, Wu C C . Adv Mater , 2016 . 28 6976 - 6983 . DOI:10.1002/adma.201601675http://doi.org/10.1002/adma.201601675 .
Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L . Adv Mater , 2018 . 30 1704961 DOI:10.1002/adma.201704961http://doi.org/10.1002/adma.201704961 .
Nikolaenko A E, Cass M, Bourcet F, Mohamad D, Roberts M . Adv Mater , 2015 . 27 7236 - 7240 . DOI:10.1002/adma.201501090http://doi.org/10.1002/adma.201501090 .
Lee S Y, Yasuda T, Komiyama H, Lee J, Adachi C . Adv Mater , 2016 . 28 4019 - 4024 . DOI:10.1002/adma.201505026http://doi.org/10.1002/adma.201505026 .
Shao S Y, Hu J, Wan g X D, Wang L X, Jing X B, Wang F S . J Am Chem Soc , 2017 . 139 17739 - 17742 . DOI:10.1021/jacs.7b10257http://doi.org/10.1021/jacs.7b10257 .
Xie G H, Luo J J, Huang M L, Chen T H, Wu K L, Gong S L, Yang C L . Adv Mater , 2017 . 29 1604223 DOI:10.1002/adma.201604223http://doi.org/10.1002/adma.201604223 .
Shao S Y, Ding J Q, Ye T L, Xie Z Y, Wang LX, Jing X B, Wang F S . Adv Mater , 2011 . 23 3570 - 3574 . DOI:10.1002/adma.201101074http://doi.org/10.1002/adma.201101074 .
Wang Y J, Zhu Y H, Xie G H, Zhan H M, Yang C L, Cheng Y X . J Mater Chem C , 2017 . 5 10715 - 10720 . DOI:10.1039/C7TC03769Dhttp://doi.org/10.1039/C7TC03769D .
Ren Z J, Nobuyasu R S, Dias F B, Monkman A P, Yan S K, Bryce M R . Macromolecules , 2016 . 49 5452 - 5460 . DOI:10.1021/acs.macromol.6b01216http://doi.org/10.1021/acs.macromol.6b01216 .
Zeng X, Luo J J, Zhou T, Chen T H, Zhou X, Wu K L, Zou Y, Xie G H, Shao L G, Yang C L . Macromolecules , 2018 . 51 1598 - 1604 . DOI:10.1021/acs.macromol.7b02629http://doi.org/10.1021/acs.macromol.7b02629 .
Yang Y, Zhao L, Wang S M, Ding J Q, Wang L X . Macromolecules , 2018 . 51 9933 - 9942 . DOI:10.1021/acs.macromol.8b02050http://doi.org/10.1021/acs.macromol.8b02050 .
Dijken A V, Bastiaansen J J A M, Kiggen N M M, Langeveld B M W, Rothe C, Monkman A, Bach I, Stössel P, Brunner K . J Am Chem Soc , 2004 . 126 7718 - 7727 . DOI:10.1021/ja049771jhttp://doi.org/10.1021/ja049771j .
Zhang Q S, Kuwabara H, Potscavage W J Jr, Huang S, Hatae Y, Shibata T, Adachi C . J Am Chem Soc , 2014 . 136 18070 - 18081 . DOI:10.1021/ja510144hhttp://doi.org/10.1021/ja510144h .
Caspar Jonathan V, Kober E M, Sullivan B P, Meyer T J . J Am Chem Soc , 1982 . 104 632 - 634 . DOI:10.1021/ja00366a052http://doi.org/10.1021/ja00366a052 .
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W . Adv Mater , 2014 . 26 7931 - 7958 . DOI:10.1002/adma.v26.47http://doi.org/10.1002/adma.v26.47 .
Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C . Adv Mater , 2013 . 25 3319 - 3323 . DOI:10.1002/adma.v25.24http://doi.org/10.1002/adma.v25.24 .