With the rapid development of modern organic chemistry and polymer chemistry
a variety of highly efficient and controllable synthetic methods have been discovered and applied extensively
such as click chemistry
atom transfer radical polymerization
reversible addition-fragmentation chain transfer polymerization
and ring-opening metathesis polymerization. Their comprehensive application has realized the controlled preparation of unimolecular polymer nanomaterials with well-designed topological structures
including cyclodextrane polyrotaxanes
dendrimers
multiarm star-shaped polymers
wormlike polymer brushes
etc
. Functioning as probes and drug carriers for disease diagnoses and treatments
respectively
these specifically fabricated materials are featured with such advantages as high designability
controllability
and stability of chemical structures
favorable reproducibility of pharmacokinetic and pharmacological profiles
great abundancy in reactive groups for multiple functionalization
and desirable ability to covalent-combine drugs for responsive targeted drug release. The highly controllable chemical structures of these unimolecular polymer nanomaterials make them the most suitable objects for studying the relationship between chemical and morphological structures and biological performance. Herein
the recent progress of our group is introduced
with specific focuses on the preparation of unimolecular polymer nanomaterials through controllable synthetic strategies
the precise control of their chemical structures and sizes
and the effect of their chemical structures and sizes on their
in vitro
and
in vivo
biological performance. The objectives of our research include cyclodextrane polyrotaxanes
dendrimers
multiarm star-shaped polymers
and wormlike polymer brushes
and their sizes range from several nanometers to dozens of nanometers. Based on our experiments
some important conclusions have been drawn as follows. Within the dimensional range between ten nanometers and dozens of nanometers
the size reduction of such nanomaterials favors higher cellular uptake
shorter blood circulation
as well as higher tumor accumulation and penetration. Besides
the nanomaterials with zwitterionic poly(carboxybetaine) (PCB) surface exhibit higher cellular uptake
longer blood circulation
and higher tumor accumulation and penetration than those with the poly(ethylene glycol) (PEG) surface do thanks to the surface-tethered phenylboronic acid groups. These results can be much conducive to the design of polymer nanocarriers for tumor diagnosis and therapy.
Gerlowski L E, Jain R K . Microvasc Res , 1986 . 31 ( 3 ): 288 - 305 . DOI:10.1016/0026-2862(86)90018-Xhttp://doi.org/10.1016/0026-2862(86)90018-X .
Matsumura Y, Maeda H . Cancer Res , 1986 . 46 ( 12 ): 6387 - 6392.
Shi J J, Kantoff P W, Wooster R, Farokhzad O . Nat Rev Cancer , 2017 . 17 ( 1 ): 20 - 37 . DOI:10.1038/nrc.2016.108http://doi.org/10.1038/nrc.2016.108 .
Anselmo A C, Prabhakarpandian B, Pant K, Mitragotri S . Transl Mater Res , 2017 . 4 ( 1 ): 014001 DOI:10.1088/2053-1613/aa5468http://doi.org/10.1088/2053-1613/aa5468 .
Youn Y S, Bae Y H . Adv Drug Deliv Rev , 2018 . 130 3 - 11 . DOI:10.1016/j.addr.2018.05.008http://doi.org/10.1016/j.addr.2018.05.008 .
Sun X R, Wang G W, Zhang H, Hu S Q, Liu X, Tang J B, Shen Y Q . ACS Nano , 2018 . 12 ( 6 ): 6179 - 6192 . DOI:10.1021/acsnano.8b02830http://doi.org/10.1021/acsnano.8b02830 .
Ooya T, Eguchi M, Yui N . J Am Chem Soc , 2003 . 125 ( 43 ): 13016 - 13017 . DOI:10.1021/ja034583zhttp://doi.org/10.1021/ja034583z .
Okada M, Harada A . Org Lett , 2004 . 6 ( 3 ): 361 - 364 . DOI:10.1021/ol0361608http://doi.org/10.1021/ol0361608 .
Li J, Yang C, Li H, Wang X, Goh S H, Ding J L, Wang D Y, Leong K W . Adv Mater , 2006 . 18 ( 22 ): 2969 - 2974 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Yu S L, Zhang Y J, Wang X, Zhen X, Zhang Z H, Wu W, Jiang X Q . Angew Chem Int Ed , 2013 . 52 ( 28 ): 7272 - 7277 . DOI:10.1002/anie.201301397http://doi.org/10.1002/anie.201301397 .
Zhang J L, Zhang L E, Shun L, Yin C F, Li C, Wu W, Jiang X Q . ACS Biomater Sci Eng , 2018 . 4 ( 6 ): 1963 - 1968 . DOI:10.1021/acsbiomaterials.7b00464http://doi.org/10.1021/acsbiomaterials.7b00464 .
Jackson C L, Chanzy H D, Booy F P, Drake B J, Tomalia D A, Bauer B J, Amis E J . Macromolecules , 1998 . 31 ( 18 ): 6259 - 6265 . DOI:10.1021/ma9806155http://doi.org/10.1021/ma9806155 .
Zhang Y J, Chen W Z, Yang C C, Fan Q L, Wu W, Jiang X Q . J Control Release , 2016 . 237 ( 1 ): 115 - 124.
Müllner M, Dodds S J, Nguyen T H, Senyschyn D, Porter C J H, Boyd B J, Caruso F . ACS Nano , 2015 . 9 ( 2 ): 1294 - 1304 . DOI:10.1021/nn505125fhttp://doi.org/10.1021/nn505125f .
Müllner M, Mehta D, Nowell C J, Porter C J H . Chem Commun , 2016 . ( 52 ): 9121 - 9124.
Zhang Y J, Zhang Z K, Liu C R, Chen W Z, Li C, Wu W, Jiang X Q . Polym Chem , 2017 . 8 ( 10 ): 1672 - 1679 . DOI:10.1039/C6PY01941Bhttp://doi.org/10.1039/C6PY01941B .