浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
3.中国科学院宁波材料技术与工程研究所 宁波 315201
Published:2019-3,
Published Online:15 November 2018,
Received:21 September 2018,
Revised:14 October 2018,
扫 描 看 全 文
Jie Miao, Zhen Wang, Xiao-dong Ji, Jing-ling Yan. Synthesis and Properties of Creosol-derived Polyimides. [J]. Acta Polymerica Sinica 50(3):261-270(2019)
Jie Miao, Zhen Wang, Xiao-dong Ji, Jing-ling Yan. Synthesis and Properties of Creosol-derived Polyimides. [J]. Acta Polymerica Sinica 50(3):261-270(2019) DOI: 10.11777/j.issn1000-3304.2019.18201.
以木质素衍生物4-甲基愈创木酚为主要原料制备了3种生物基芳香二酐,并与石油基和生物基二胺聚合制备了3个系列的生物基聚酰亚胺,这些聚合物的生物基含量为31.8% ~ 56.4%. 利用FTIR、
1
H-NMR、DSC、DMTA、TGA和拉伸实验对聚合物的结构、热性能和力学性能进行了系统分析表征. 双醚型生物基聚酰亚胺(PI-I和PI-II系列)的玻璃化转变温度(
T
g
)在213 ~ 235 °C之间,5%热失重(
T
5%
)在406 ~ 453 °C之间;含有二苯并二氧六环结构的生物基聚酰亚胺(PI-III系列)的
T
g
最高可达424 °C,
T
5%
最高可达508 °C. 聚合物的拉伸强度、弹性模量和断裂伸长率分别为70 ~ 115 MPa、1.8 ~ 2.8 GPa和3.5% ~ 20.4%. 上述结果表明,基于4-甲基愈创木酚的生物基聚酰亚胺具有与石油基聚酰亚胺相当的热和机械性能.
The development of high-performance polymers using bio-renewable feedstocks will promote a sustainable society. However
it remains a challenge to fabricate polyimides rich in bio-based component while high in heat resistance. In this work
three types of bio-based dianhydrides were synthesized using bio-renewable creosol as the raw material
which were then applied for preparing three series of polyimides
via
polycondensation with petroleum- or bio-based diamines. The molecular weights of these bio-based polyimides were in the range of 14 – 233 kg mol
−1
. The inherent viscosity of these polymers spanned a range 0.4 – 2.06 dL g
−1
. Most of the polyimides were soluble in common organic solvents
and flexible films could be readily cast from their solutions. The bio-based contents of these polymers ranged from 31.8% to 56.4%. The temperatures at 5% weight loss (
T
5%
) and the glass transition temperatures (
T
g
) of bio-based polyetherimides (PI-I and PI-II series) were 406 – 453 °C and 213 – 235 °C
respectively
while PI-III series containing dioxin segments exhibited a
T
5%
at 490 – 508 °C and
T
g
at 378 – 424 °C due to the existence of fused aromatic rings. The tensile strength
modulus
and elongation at break of these polyimides were 70 – 115 MPa
1.80 – 2.8 GPa
and 3.5% – 20.4%
respectively. The above mentioned results indicated comparable thermal and mechanical properties between the bio-based polyimies in this study and those made from petroleum-based monomers
such as Ultem
®
and Kapton
®
. Due to an excellent combination of high bio-based contents and outstanding thermal and mechanical properties
these polyimides showed great potential in various applications as films and engineering plastics
replacing petroleum-based polyimides.
生物基聚酰亚胺4-甲基愈创木酚二酐热和机械性能
Bio-based polyimidesCreosolDianhydridesThermal and mechanical properties
Sroog C E . Prog Polym Sci , 1991 . 16 561 - 694 . DOI:10.1016/0079-6700(91)90010-Ihttp://doi.org/10.1016/0079-6700(91)90010-I .
Abajo J D, Campa J G D L . J Appl Polym Sci , 1985 . 30 2401 - 2411 . DOI:10.1002/app.1985.070300611http://doi.org/10.1002/app.1985.070300611 .
Belgacem N M. Monomers, Polymers and Composites from Renewable Resources. Oxford: Elsevier Ltd, 2008. 43 − 46
Hu J H, Wang Z P, Lu Z, Chen C, Shi M, Wang J B, Zhao E J, Zeng K, Yang G . Polymer , 2017 . 119 59 - 65 . DOI:10.1016/j.polymer.2017.05.012http://doi.org/10.1016/j.polymer.2017.05.012 .
Hu J H, Chen C, Yang F, He B, Lu Z, Li R K, Yang G, Zeng K . Polymer , 2018 . 146 407 - 419 . DOI:10.1016/j.polymer.2018.05.006http://doi.org/10.1016/j.polymer.2018.05.006 .
Suvannasara P, Tateyama S, Miyasato A, Matsumura K, Shimoda T, Ito T, Yamagata Y, Fujita T, Takaya N, Kaneko T . Macromolecules , 2014 . 47 1586 - 1593 . DOI:10.1021/ma402499mhttp://doi.org/10.1021/ma402499m .
Ji X D, Wang Z K, Yan J L, Wang Z . Polymer , 2015 . 74 38 - 45 . DOI:10.1016/j.polymer.2015.07.051http://doi.org/10.1016/j.polymer.2015.07.051 .
Mi Z M, Liu Z X, Tian C S, Zhao X G, Zhou H W, Wang D M, Chen C H . J Polym Sci, Part A: Polym Chem , 2017 . 55 3253 - 3265 . DOI:10.1002/pola.v55.19http://doi.org/10.1002/pola.v55.19 .
Yang G L, Zhang R, Huang H H, Liu L X, Wang L, Chen Y M . RSC Adv , 2015 . 5 67574 - 67582 . DOI:10.1039/C5RA14526Khttp://doi.org/10.1039/C5RA14526K .
Kuhire S S, Sharma P, Chakrabarty S, Wadgaonkar P P . J Polym Sci, Part A: Polym Chem , 2017 . 55 3636 - 3645 . DOI:10.1002/pola.v55.21http://doi.org/10.1002/pola.v55.21 .
Raquez J M, Deléglise M, Lacrampe M F, Krawczak P . Prog Polym Sci , 2010 . 35 487 - 509 . DOI:10.1016/j.progpolymsci.2010.01.001http://doi.org/10.1016/j.progpolymsci.2010.01.001 .
Lu Yao(路瑶), Wei Xianyong(魏贤勇), Zong Zhimin(宗志敏), Lu Yongchao(陆永超), Zhao Wei(赵炜), Cao Jingpei(曹景沛) . 化学进展 , Prog Chem , 2013 . ( 25 ): 838 - 858.
Laurichesse S, Avérous L . Prog Polym Sci , 2014 . 39 1266 - 1290 . DOI:10.1016/j.progpolymsci.2013.11.004http://doi.org/10.1016/j.progpolymsci.2013.11.004 .
Pion F, Ducrot P H, Allais F . Macromol Chem Phys , 2014 . 215 431 - 439 . DOI:10.1002/macp.v215.5http://doi.org/10.1002/macp.v215.5 .
Mialon L, Vanderhenst R, Pemba A G, Miller S A . Macromol Rapid Commun , 2011 . 32 1386 - 1392 . DOI:10.1002/marc.201100242http://doi.org/10.1002/marc.201100242 .
Kuhire S S, Avadhani C V, Wadgaonkar P P . Eur Polym J , 2015 . 71 547 - 557 . DOI:10.1016/j.eurpolymj.2015.08.021http://doi.org/10.1016/j.eurpolymj.2015.08.021 .
Fache M, Montérémal C, Boutevin B, Caillol S . Eur Polym J , 2015 . 73 344 - 362 . DOI:10.1016/j.eurpolymj.2015.10.032http://doi.org/10.1016/j.eurpolymj.2015.10.032 .
Meylemans H A, Harvey B G, Reams J T, Guenthner A J, Cambrea L R, Groshens T J, Baldwin L C, Garrison M D, Mabry J M . Biomacromolecules , 2013 . 14 771 - 780 . DOI:10.1021/bm3018438http://doi.org/10.1021/bm3018438 .
Hocking M B . J Chem Educ , 1997 . 74 1055 - 1059 . DOI:10.1021/ed074p1055http://doi.org/10.1021/ed074p1055 .
Wang Q, Yang Y, Li Y, Yu W, Hou Z J . Tetrahedron , 2006 . 62 6107 - 6112 . DOI:10.1016/j.tet.2006.03.111http://doi.org/10.1016/j.tet.2006.03.111 .
Meylemans H A, Groshens T J, Harvey B G . ChemSusChem , 2012 . 5 206 - 210 . DOI:10.1002/cssc.201100402http://doi.org/10.1002/cssc.201100402 .
Garrison M D, Harvey B G . J Appl Polym Sci , 2016 . 133 43621 - 43623.
Harvey B G, Guenthner A J, Koontz T A, Storch P J, Reams J T, Groshens T J . Green Chem , 2016 . 18 2416 - 2423 . DOI:10.1039/C5GC02893Khttp://doi.org/10.1039/C5GC02893K .
Thiyagarajan S, Gootjes L, Vogelzang W, Wu J, van Haveren J, van Es D S . Tetrahedron , 2011 . 67 383 - 389 . DOI:10.1016/j.tet.2010.11.031http://doi.org/10.1016/j.tet.2010.11.031 .
Li Q X, Fang X Z, Wang Z, Gao L X, Ding M X . J Polym Sci, Part A: Polym Chem , 2003 . 41 3249 - 3260.
Norton G A, Devlin S L . Bioresour Technol , 2006 . 97 2084 - 2090 . DOI:10.1016/j.biortech.2005.08.017http://doi.org/10.1016/j.biortech.2005.08.017 .
Saini A K, Carlin C M, Patterson H H . J Polym Sci, Part A: Polym Chem , 1993 . 31 2751 - 2758 . DOI:10.1002/pola.1993.080311111http://doi.org/10.1002/pola.1993.080311111 .
Sazanov Y N, Shibaev L A . Thermochim Acta , 1976 . 15 43 - 54 . DOI:10.1016/0040-6031(76)80090-1http://doi.org/10.1016/0040-6031(76)80090-1 .
Wu J, Jasinskawalc L, Dudenko D, Rozanski A, Hansen M R, Es D V, Koning C E . Macromolecules , 2012 . 45 9333 - 9346 . DOI:10.1021/ma302126bhttp://doi.org/10.1021/ma302126b .
Ding M X . Prog Polym Sci , 2007 . 32 623 - 668 . DOI:10.1016/j.progpolymsci.2007.01.007http://doi.org/10.1016/j.progpolymsci.2007.01.007 .
0
Views
39
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution