Wei-wei Li. Double-cable Conjugated Polymers and Their Application in Single-component Organic Solar Cells. [J]. Acta Polymerica Sinica 50(3):209-218(2019)
DOI:
Wei-wei Li. Double-cable Conjugated Polymers and Their Application in Single-component Organic Solar Cells. [J]. Acta Polymerica Sinica 50(3):209-218(2019) DOI: 10.11777/j.issn1000-3304.2019.18212.
Double-cable Conjugated Polymers and Their Application in Single-component Organic Solar Cells
Bulk-heterojunction (BHJ) structures that comprise donor and acceptor blended physically in photoactive layers are proved very promising for applications in organic solar cells
of which a power conversion efficiency (PCE) of 15% has already been achieved in single-junction devices. However
their nanophase separation is susceptible to heat and light and hence lower the stability of solar cells during long-term service. To this end
single-component organic solar cells (SCOSCs) are developed as potential alternatives with better photovoltaic stability. Double-cable conjugated polymers
which consist of electron-rich conjugated backbone and electron-deficient conjugated side chains
can be applied into SCOSCs by forming BHJ structures in a single conjugated polymer. Relevant research on double-cable conjugated polymers and SCOSCs has rarely been reported in the past years and their PCEs lagged far behind those of the BHJ solar cells. Herein
we first provide a general review on the research progress of SCOSCs and then center the discussion on some recent findings in our group about double-cable conjugated polymers
including the development of new synthetic methods
the design ideas for novel double-cable polymers composed of varied conjugated backbones with conjugated side chains and linkers
the tuning approaches toward nanophase separation in double-cable polymers
and the ultimate applications in SCOSCs. Given the existing studies
we believe that SCOSCs based on double-cable polymers will receive more attention and advance further with higher PCEs in the near future.
关键词
双缆共轭聚合物有机太阳能电池单组分相分离
Keywords
Double-cable polymerOrganic solar cellSingle-componentPhase separation
Blom P W M, Mihailetchi V D, Koster L J A, Markov D E . Adv Mater , 2007 . 19 ( 12 ): 1551 - 1566 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉) . 高分子学报 , Acta Polymerica Sinica , 2018 . ( 2 ): 223 - 230.
Chamberlain G A, Cooney P J . Chem Phys Lett , 1979 . 66 ( 1 ): 88 - 94 . DOI:10.1016/0009-2614(79)80374-7http://doi.org/10.1016/0009-2614(79)80374-7 .
Cravino A, Leriche P, Alévêque O, Roquet S, Roncali J . Adv Mater , 2006 . 18 ( 22 ): 3033 - 3037 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095 .
Arumugam S, Cortizo-Lacalle D, Rossbauer S, Hunter S, Kanibolotsky A L, Inigo A R, Lane P A, Anthopoulos T D, Skabara P J . ACS Appl Mater Interfaces , 2015 . 7 ( 51 ): 27999 - 28005 . DOI:10.1021/am5080562http://doi.org/10.1021/am5080562 .
Liu X, Xie B, Duan C, Wang Z, Fan B, Zhang K, Lin B, Colberts F J M, Ma W, Janssen R A J, Huang F, Cao Y . J Mater Chem A , 2018 . 6 ( 2 ): 395 - 403 . DOI:10.1039/C7TA10136Hhttp://doi.org/10.1039/C7TA10136H .
Liu D, Yang L, Wu Y, Wang X, Zeng Y, Han G, Yao H, Li S, Zhang S, Zhang Y, Yi Y, He C, Ma W, Hou J . Chem Mater , 2018 . 30 ( 3 ): 619 - 628 . DOI:10.1021/acs.chemmater.7b03142http://doi.org/10.1021/acs.chemmater.7b03142 .
Bu L J, Guo X Y, Yu B, Qu Y, Xie Z Y, Yan D H, Geng Y H, Wang F S . J Am Chem Soc , 2009 . 131 ( 37 ): 13242 - 13243 . DOI:10.1021/ja905980whttp://doi.org/10.1021/ja905980w .
Qu J, Liu J, Li S, Xie Z, Geng Y . Chinese J Polym Sci , 2013 . 31 ( 5 ): 815 - 822 . DOI:10.1007/s10118-013-1276-xhttp://doi.org/10.1007/s10118-013-1276-x .
Qu J, Gao B, Tian H, Zhang X, Wang Y, Xie Z, Wang H, Geng Y, Wang F . J Mater Chem A , 2014 . 2 ( 10 ): 3632 - 3640 . DOI:10.1039/c3ta14701khttp://doi.org/10.1039/c3ta14701k .
Sommer M, Huettner S, Thelakkat M . J Mater Chem , 2010 . 20 ( 48 ): 10788 DOI:10.1039/c0jm00665chttp://doi.org/10.1039/c0jm00665c .
Wang M, Wudl F . J Mater Chem , 2012 . 22 ( 46 ): 24297 - 24314 . DOI:10.1039/c2jm33756hhttp://doi.org/10.1039/c2jm33756h .
Mitchell V D, Jones D J . Polym Chem , 2018 . 9 ( 7 ): 795 - 814 . DOI:10.1039/C7PY01878Ahttp://doi.org/10.1039/C7PY01878A .
Guo C, Lin Y H, Witman M D, Smith K A, Wang C, Hexemer A, Strzalka J, Gomez E D, Verduzco R . Nano Lett , 2013 . 13 ( 6 ): 2957 - 2963 . DOI:10.1021/nl401420shttp://doi.org/10.1021/nl401420s .
Ku S Y, Brady M A, Treat N D, Cochran J E, Robb M J, Kramer E J, Chabinyc M L, Hawker C J . J Am Chem Soc , 2012 . 134 ( 38 ): 16040 - 16046 . DOI:10.1021/ja307431khttp://doi.org/10.1021/ja307431k .
Robb M J, Ku S Y, Hawker C J . Adv Mater , 2013 . 25 ( 40 ): 5686 - 5700 . DOI:10.1002/adma.v25.40http://doi.org/10.1002/adma.v25.40 .
Wang J, Ueda M, Higashihara T . ACS Macro Lett , 2013 . 2 ( 6 ): 506 - 510 . DOI:10.1021/mz400143yhttp://doi.org/10.1021/mz400143y .
Miyakoshi R, Yokoyama A, Yokozawa T . J Am Chem Soc , 2005 . 127 ( 49 ): 17542 - 17547 . DOI:10.1021/ja0556880http://doi.org/10.1021/ja0556880 .
Ramos A M, Rispens M T, van Duren J K J, Hummelen J C, Janssen R A J . J Am Chem Soc , 2001 . 123 ( 27 ): 6714 - 6715 . DOI:10.1021/ja015614yhttp://doi.org/10.1021/ja015614y .
Zhang F, Svensson M, Andersson M R, Maggini M, Bucella S, Menna E, Inganäs O . Adv Mater , 2001 . 13 ( 24 ): 1871 - 1874 . DOI:10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3http://doi.org/10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3 .
Lai W, Li C, Zhang J, Yang F, Colberts F J M, Guo B, Wang Q M, Li M, Zhang A, Janssen R A J, Zhang M, Li W . Chem Mater , 2017 . 29 ( 17 ): 7073 - 7077 . DOI:10.1021/acs.chemmater.7b02534http://doi.org/10.1021/acs.chemmater.7b02534 .
Feng G, Li J, Colberts F J M, Li M, Zhang J, Yang F, Jin Y, Zhang F, Janssen R A J, Li C, Li W . J Am Chem Soc , 2017 . 139 ( 51 ): 18647 - 18656 . DOI:10.1021/jacs.7b10499http://doi.org/10.1021/jacs.7b10499 .
Yang F, Wang X, Feng G, Ma J, Li C, Li J, Ma W, Li W . Sci China Chem , 2018 . 61 ( 7 ): 824 - 829 . DOI:10.1007/s11426-018-9241-0http://doi.org/10.1007/s11426-018-9241-0 .
Yu C, Xu Y, Li C, Feng G, Yang F, Li J, Li W . Chin J Chem , 2018 . 36 ( 6 ): 515 - 518 . DOI:10.1002/cjoc.v36.6http://doi.org/10.1002/cjoc.v36.6 .
Stepwise Extended π-Conjugation Lengths of Chlorinated Oligomeric Non-fullerene Acceptors Accessed via Direct C―H Arylation
Preparation of High Performance Dielectric Elastomers by Tailoring the Aggregation Structure of Polyurethane
Phase Separation Behavior of Poly(methyl methacrylate)/ Poly(vinyl acetate)/Silica Blends
High-performance A-D-A Structured Oligomer-like Organic Photovoltaic Materials and Devices
The Development of Polymer Physics and Characterization in Mainland China since Reform and Opening-up
Related Author
No data
Related Institution
College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology
Bohai Rim Collaborative Innovation Center on Green Chemical Application Technology, Department of Chemical Engineering, Weifang Vocational College
Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University